Factor
\left(5m-7\right)\left(7m-4\right)
Evaluate
\left(5m-7\right)\left(7m-4\right)
Share
Copied to clipboard
a+b=-69 ab=35\times 28=980
Factor the expression by grouping. First, the expression needs to be rewritten as 35m^{2}+am+bm+28. To find a and b, set up a system to be solved.
-1,-980 -2,-490 -4,-245 -5,-196 -7,-140 -10,-98 -14,-70 -20,-49 -28,-35
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 980.
-1-980=-981 -2-490=-492 -4-245=-249 -5-196=-201 -7-140=-147 -10-98=-108 -14-70=-84 -20-49=-69 -28-35=-63
Calculate the sum for each pair.
a=-49 b=-20
The solution is the pair that gives sum -69.
\left(35m^{2}-49m\right)+\left(-20m+28\right)
Rewrite 35m^{2}-69m+28 as \left(35m^{2}-49m\right)+\left(-20m+28\right).
7m\left(5m-7\right)-4\left(5m-7\right)
Factor out 7m in the first and -4 in the second group.
\left(5m-7\right)\left(7m-4\right)
Factor out common term 5m-7 by using distributive property.
35m^{2}-69m+28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-69\right)±\sqrt{\left(-69\right)^{2}-4\times 35\times 28}}{2\times 35}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-69\right)±\sqrt{4761-4\times 35\times 28}}{2\times 35}
Square -69.
m=\frac{-\left(-69\right)±\sqrt{4761-140\times 28}}{2\times 35}
Multiply -4 times 35.
m=\frac{-\left(-69\right)±\sqrt{4761-3920}}{2\times 35}
Multiply -140 times 28.
m=\frac{-\left(-69\right)±\sqrt{841}}{2\times 35}
Add 4761 to -3920.
m=\frac{-\left(-69\right)±29}{2\times 35}
Take the square root of 841.
m=\frac{69±29}{2\times 35}
The opposite of -69 is 69.
m=\frac{69±29}{70}
Multiply 2 times 35.
m=\frac{98}{70}
Now solve the equation m=\frac{69±29}{70} when ± is plus. Add 69 to 29.
m=\frac{7}{5}
Reduce the fraction \frac{98}{70} to lowest terms by extracting and canceling out 14.
m=\frac{40}{70}
Now solve the equation m=\frac{69±29}{70} when ± is minus. Subtract 29 from 69.
m=\frac{4}{7}
Reduce the fraction \frac{40}{70} to lowest terms by extracting and canceling out 10.
35m^{2}-69m+28=35\left(m-\frac{7}{5}\right)\left(m-\frac{4}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{5} for x_{1} and \frac{4}{7} for x_{2}.
35m^{2}-69m+28=35\times \frac{5m-7}{5}\left(m-\frac{4}{7}\right)
Subtract \frac{7}{5} from m by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
35m^{2}-69m+28=35\times \frac{5m-7}{5}\times \frac{7m-4}{7}
Subtract \frac{4}{7} from m by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
35m^{2}-69m+28=35\times \frac{\left(5m-7\right)\left(7m-4\right)}{5\times 7}
Multiply \frac{5m-7}{5} times \frac{7m-4}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
35m^{2}-69m+28=35\times \frac{\left(5m-7\right)\left(7m-4\right)}{35}
Multiply 5 times 7.
35m^{2}-69m+28=\left(5m-7\right)\left(7m-4\right)
Cancel out 35, the greatest common factor in 35 and 35.
x ^ 2 -\frac{69}{35}x +\frac{4}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 35
r + s = \frac{69}{35} rs = \frac{4}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{69}{70} - u s = \frac{69}{70} + u
Two numbers r and s sum up to \frac{69}{35} exactly when the average of the two numbers is \frac{1}{2}*\frac{69}{35} = \frac{69}{70}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{69}{70} - u) (\frac{69}{70} + u) = \frac{4}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{5}
\frac{4761}{4900} - u^2 = \frac{4}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{5}-\frac{4761}{4900} = -\frac{841}{4900}
Simplify the expression by subtracting \frac{4761}{4900} on both sides
u^2 = \frac{841}{4900} u = \pm\sqrt{\frac{841}{4900}} = \pm \frac{29}{70}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{69}{70} - \frac{29}{70} = 0.571 s = \frac{69}{70} + \frac{29}{70} = 1.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}