Verify
true
Share
Copied to clipboard
35-\frac{22\left(-1\right)}{2}+6-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
Express 22\left(-\frac{1}{2}\right) as a single fraction.
35-\frac{-22}{2}+6-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
Multiply 22 and -1 to get -22.
35-\left(-11\right)+6-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
Divide -22 by 2 to get -11.
35+11+6-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
The opposite of -11 is 11.
46+6-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
Add 35 and 11 to get 46.
52-18\left(-\frac{1}{2}\right)=14-30\left(-\frac{1}{2}\right)+32
Add 46 and 6 to get 52.
52-\frac{18\left(-1\right)}{2}=14-30\left(-\frac{1}{2}\right)+32
Express 18\left(-\frac{1}{2}\right) as a single fraction.
52-\frac{-18}{2}=14-30\left(-\frac{1}{2}\right)+32
Multiply 18 and -1 to get -18.
52-\left(-9\right)=14-30\left(-\frac{1}{2}\right)+32
Divide -18 by 2 to get -9.
52+9=14-30\left(-\frac{1}{2}\right)+32
The opposite of -9 is 9.
61=14-30\left(-\frac{1}{2}\right)+32
Add 52 and 9 to get 61.
61=14-\frac{30\left(-1\right)}{2}+32
Express 30\left(-\frac{1}{2}\right) as a single fraction.
61=14-\frac{-30}{2}+32
Multiply 30 and -1 to get -30.
61=14-\left(-15\right)+32
Divide -30 by 2 to get -15.
61=14+15+32
The opposite of -15 is 15.
61=29+32
Add 14 and 15 to get 29.
61=61
Add 29 and 32 to get 61.
\text{true}
Compare 61 and 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}