35 \% \text { of } x = 2 \times 73 \% \text { of } y
Solve for x
x=\frac{146y}{35}
Solve for y
y=\frac{35x}{146}
Graph
Share
Copied to clipboard
\frac{7}{20}x=2\times \frac{73}{100}y
Reduce the fraction \frac{35}{100} to lowest terms by extracting and canceling out 5.
\frac{7}{20}x=\frac{73}{50}y
Multiply 2 and \frac{73}{100} to get \frac{73}{50}.
\frac{7}{20}x=\frac{73y}{50}
The equation is in standard form.
\frac{\frac{7}{20}x}{\frac{7}{20}}=\frac{73y}{\frac{7}{20}\times 50}
Divide both sides of the equation by \frac{7}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{73y}{\frac{7}{20}\times 50}
Dividing by \frac{7}{20} undoes the multiplication by \frac{7}{20}.
x=\frac{146y}{35}
Divide \frac{73y}{50} by \frac{7}{20} by multiplying \frac{73y}{50} by the reciprocal of \frac{7}{20}.
\frac{7}{20}x=2\times \frac{73}{100}y
Reduce the fraction \frac{35}{100} to lowest terms by extracting and canceling out 5.
\frac{7}{20}x=\frac{73}{50}y
Multiply 2 and \frac{73}{100} to get \frac{73}{50}.
\frac{73}{50}y=\frac{7}{20}x
Swap sides so that all variable terms are on the left hand side.
\frac{73}{50}y=\frac{7x}{20}
The equation is in standard form.
\frac{\frac{73}{50}y}{\frac{73}{50}}=\frac{7x}{\frac{73}{50}\times 20}
Divide both sides of the equation by \frac{73}{50}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{7x}{\frac{73}{50}\times 20}
Dividing by \frac{73}{50} undoes the multiplication by \frac{73}{50}.
y=\frac{35x}{146}
Divide \frac{7x}{20} by \frac{73}{50} by multiplying \frac{7x}{20} by the reciprocal of \frac{73}{50}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}