Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

35=\left(66+6x\right)\left(1+x\right)
Use the distributive property to multiply 6 by 11+x.
35=66+72x+6x^{2}
Use the distributive property to multiply 66+6x by 1+x and combine like terms.
66+72x+6x^{2}=35
Swap sides so that all variable terms are on the left hand side.
66+72x+6x^{2}-35=0
Subtract 35 from both sides.
31+72x+6x^{2}=0
Subtract 35 from 66 to get 31.
6x^{2}+72x+31=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\times 6\times 31}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 72 for b, and 31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\times 6\times 31}}{2\times 6}
Square 72.
x=\frac{-72±\sqrt{5184-24\times 31}}{2\times 6}
Multiply -4 times 6.
x=\frac{-72±\sqrt{5184-744}}{2\times 6}
Multiply -24 times 31.
x=\frac{-72±\sqrt{4440}}{2\times 6}
Add 5184 to -744.
x=\frac{-72±2\sqrt{1110}}{2\times 6}
Take the square root of 4440.
x=\frac{-72±2\sqrt{1110}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{1110}-72}{12}
Now solve the equation x=\frac{-72±2\sqrt{1110}}{12} when ± is plus. Add -72 to 2\sqrt{1110}.
x=\frac{\sqrt{1110}}{6}-6
Divide -72+2\sqrt{1110} by 12.
x=\frac{-2\sqrt{1110}-72}{12}
Now solve the equation x=\frac{-72±2\sqrt{1110}}{12} when ± is minus. Subtract 2\sqrt{1110} from -72.
x=-\frac{\sqrt{1110}}{6}-6
Divide -72-2\sqrt{1110} by 12.
x=\frac{\sqrt{1110}}{6}-6 x=-\frac{\sqrt{1110}}{6}-6
The equation is now solved.
35=\left(66+6x\right)\left(1+x\right)
Use the distributive property to multiply 6 by 11+x.
35=66+72x+6x^{2}
Use the distributive property to multiply 66+6x by 1+x and combine like terms.
66+72x+6x^{2}=35
Swap sides so that all variable terms are on the left hand side.
72x+6x^{2}=35-66
Subtract 66 from both sides.
72x+6x^{2}=-31
Subtract 66 from 35 to get -31.
6x^{2}+72x=-31
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+72x}{6}=-\frac{31}{6}
Divide both sides by 6.
x^{2}+\frac{72}{6}x=-\frac{31}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+12x=-\frac{31}{6}
Divide 72 by 6.
x^{2}+12x+6^{2}=-\frac{31}{6}+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-\frac{31}{6}+36
Square 6.
x^{2}+12x+36=\frac{185}{6}
Add -\frac{31}{6} to 36.
\left(x+6\right)^{2}=\frac{185}{6}
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{\frac{185}{6}}
Take the square root of both sides of the equation.
x+6=\frac{\sqrt{1110}}{6} x+6=-\frac{\sqrt{1110}}{6}
Simplify.
x=\frac{\sqrt{1110}}{6}-6 x=-\frac{\sqrt{1110}}{6}-6
Subtract 6 from both sides of the equation.