Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{35}{2}=\left(x-5\right)^{2}
Divide both sides by 2.
\frac{35}{2}=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=\frac{35}{2}
Swap sides so that all variable terms are on the left hand side.
x^{2}-10x+25-\frac{35}{2}=0
Subtract \frac{35}{2} from both sides.
x^{2}-10x+\frac{15}{2}=0
Subtract \frac{35}{2} from 25 to get \frac{15}{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times \frac{15}{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and \frac{15}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times \frac{15}{2}}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-30}}{2}
Multiply -4 times \frac{15}{2}.
x=\frac{-\left(-10\right)±\sqrt{70}}{2}
Add 100 to -30.
x=\frac{10±\sqrt{70}}{2}
The opposite of -10 is 10.
x=\frac{\sqrt{70}+10}{2}
Now solve the equation x=\frac{10±\sqrt{70}}{2} when ± is plus. Add 10 to \sqrt{70}.
x=\frac{\sqrt{70}}{2}+5
Divide 10+\sqrt{70} by 2.
x=\frac{10-\sqrt{70}}{2}
Now solve the equation x=\frac{10±\sqrt{70}}{2} when ± is minus. Subtract \sqrt{70} from 10.
x=-\frac{\sqrt{70}}{2}+5
Divide 10-\sqrt{70} by 2.
x=\frac{\sqrt{70}}{2}+5 x=-\frac{\sqrt{70}}{2}+5
The equation is now solved.
\frac{35}{2}=\left(x-5\right)^{2}
Divide both sides by 2.
\frac{35}{2}=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=\frac{35}{2}
Swap sides so that all variable terms are on the left hand side.
\left(x-5\right)^{2}=\frac{35}{2}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{35}{2}}
Take the square root of both sides of the equation.
x-5=\frac{\sqrt{70}}{2} x-5=-\frac{\sqrt{70}}{2}
Simplify.
x=\frac{\sqrt{70}}{2}+5 x=-\frac{\sqrt{70}}{2}+5
Add 5 to both sides of the equation.