Solve for x
x=-\frac{94y}{34-35y}
y\neq 0\text{ and }y\neq \frac{34}{35}
Solve for y
y=-\frac{34x}{94-35x}
x\neq 0\text{ and }x\neq \frac{94}{35}
Graph
Share
Copied to clipboard
35xy=y\times 94+x\times 34
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
35xy-x\times 34=y\times 94
Subtract x\times 34 from both sides.
35xy-34x=y\times 94
Multiply -1 and 34 to get -34.
\left(35y-34\right)x=y\times 94
Combine all terms containing x.
\left(35y-34\right)x=94y
The equation is in standard form.
\frac{\left(35y-34\right)x}{35y-34}=\frac{94y}{35y-34}
Divide both sides by 35y-34.
x=\frac{94y}{35y-34}
Dividing by 35y-34 undoes the multiplication by 35y-34.
x=\frac{94y}{35y-34}\text{, }x\neq 0
Variable x cannot be equal to 0.
35xy=y\times 94+x\times 34
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
35xy-y\times 94=x\times 34
Subtract y\times 94 from both sides.
35xy-94y=x\times 34
Multiply -1 and 94 to get -94.
\left(35x-94\right)y=x\times 34
Combine all terms containing y.
\left(35x-94\right)y=34x
The equation is in standard form.
\frac{\left(35x-94\right)y}{35x-94}=\frac{34x}{35x-94}
Divide both sides by 35x-94.
y=\frac{34x}{35x-94}
Dividing by 35x-94 undoes the multiplication by 35x-94.
y=\frac{34x}{35x-94}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}