Evaluate
\frac{345973}{32}=10811.65625
Factor
\frac{277 \cdot 1249}{2 ^ {5}} = 10811\frac{21}{32} = 10811.65625
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)345973}\\\end{array}
Use the 1^{st} digit 3 from dividend 345973
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)345973}\\\end{array}
Since 3 is less than 32, use the next digit 4 from dividend 345973 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)345973}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345973
\begin{array}{l}\phantom{32)}01\phantom{4}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}2\\\end{array}
Find closest multiple of 32 to 34. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 34 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{32)}01\phantom{5}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}25\\\end{array}
Use the 3^{rd} digit 5 from dividend 345973
\begin{array}{l}\phantom{32)}010\phantom{6}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}25\\\end{array}
Since 25 is less than 32, use the next digit 9 from dividend 345973 and add 0 to the quotient
\begin{array}{l}\phantom{32)}010\phantom{7}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\end{array}
Use the 4^{th} digit 9 from dividend 345973
\begin{array}{l}\phantom{32)}0108\phantom{8}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\phantom{32)}\underline{\phantom{9}256\phantom{99}}\\\phantom{32)999}3\\\end{array}
Find closest multiple of 32 to 259. We see that 8 \times 32 = 256 is the nearest. Now subtract 256 from 259 to get reminder 3. Add 8 to quotient.
\begin{array}{l}\phantom{32)}0108\phantom{9}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\phantom{32)}\underline{\phantom{9}256\phantom{99}}\\\phantom{32)999}37\\\end{array}
Use the 5^{th} digit 7 from dividend 345973
\begin{array}{l}\phantom{32)}01081\phantom{10}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\phantom{32)}\underline{\phantom{9}256\phantom{99}}\\\phantom{32)999}37\\\phantom{32)}\underline{\phantom{999}32\phantom{9}}\\\phantom{32)9999}5\\\end{array}
Find closest multiple of 32 to 37. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 37 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{32)}01081\phantom{11}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\phantom{32)}\underline{\phantom{9}256\phantom{99}}\\\phantom{32)999}37\\\phantom{32)}\underline{\phantom{999}32\phantom{9}}\\\phantom{32)9999}53\\\end{array}
Use the 6^{th} digit 3 from dividend 345973
\begin{array}{l}\phantom{32)}010811\phantom{12}\\32\overline{)345973}\\\phantom{32)}\underline{\phantom{}32\phantom{9999}}\\\phantom{32)9}259\\\phantom{32)}\underline{\phantom{9}256\phantom{99}}\\\phantom{32)999}37\\\phantom{32)}\underline{\phantom{999}32\phantom{9}}\\\phantom{32)9999}53\\\phantom{32)}\underline{\phantom{9999}32\phantom{}}\\\phantom{32)9999}21\\\end{array}
Find closest multiple of 32 to 53. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 53 to get reminder 21. Add 1 to quotient.
\text{Quotient: }10811 \text{Reminder: }21
Since 21 is less than 32, stop the division. The reminder is 21. The topmost line 010811 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10811.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}