Evaluate
\frac{172894}{21}\approx 8233.047619048
Factor
\frac{2 \cdot 137 \cdot 631}{3 \cdot 7} = 8233\frac{1}{21} = 8233.047619047618
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)345788}\\\end{array}
Use the 1^{st} digit 3 from dividend 345788
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)345788}\\\end{array}
Since 3 is less than 42, use the next digit 4 from dividend 345788 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)345788}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345788
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)345788}\\\end{array}
Since 34 is less than 42, use the next digit 5 from dividend 345788 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)345788}\\\end{array}
Use the 3^{rd} digit 5 from dividend 345788
\begin{array}{l}\phantom{42)}008\phantom{6}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}9\\\end{array}
Find closest multiple of 42 to 345. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 345 to get reminder 9. Add 8 to quotient.
\begin{array}{l}\phantom{42)}008\phantom{7}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\end{array}
Use the 4^{th} digit 7 from dividend 345788
\begin{array}{l}\phantom{42)}0082\phantom{8}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\phantom{42)}\underline{\phantom{99}84\phantom{99}}\\\phantom{42)99}13\\\end{array}
Find closest multiple of 42 to 97. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 97 to get reminder 13. Add 2 to quotient.
\begin{array}{l}\phantom{42)}0082\phantom{9}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\phantom{42)}\underline{\phantom{99}84\phantom{99}}\\\phantom{42)99}138\\\end{array}
Use the 5^{th} digit 8 from dividend 345788
\begin{array}{l}\phantom{42)}00823\phantom{10}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\phantom{42)}\underline{\phantom{99}84\phantom{99}}\\\phantom{42)99}138\\\phantom{42)}\underline{\phantom{99}126\phantom{9}}\\\phantom{42)999}12\\\end{array}
Find closest multiple of 42 to 138. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 138 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{42)}00823\phantom{11}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\phantom{42)}\underline{\phantom{99}84\phantom{99}}\\\phantom{42)99}138\\\phantom{42)}\underline{\phantom{99}126\phantom{9}}\\\phantom{42)999}128\\\end{array}
Use the 6^{th} digit 8 from dividend 345788
\begin{array}{l}\phantom{42)}008233\phantom{12}\\42\overline{)345788}\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)99}97\\\phantom{42)}\underline{\phantom{99}84\phantom{99}}\\\phantom{42)99}138\\\phantom{42)}\underline{\phantom{99}126\phantom{9}}\\\phantom{42)999}128\\\phantom{42)}\underline{\phantom{999}126\phantom{}}\\\phantom{42)99999}2\\\end{array}
Find closest multiple of 42 to 128. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 128 to get reminder 2. Add 3 to quotient.
\text{Quotient: }8233 \text{Reminder: }2
Since 2 is less than 42, stop the division. The reminder is 2. The topmost line 008233 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8233.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}