Evaluate
\frac{3457}{2397}\approx 1.442219441
Factor
\frac{3457}{3 \cdot 17 \cdot 47} = 1\frac{1060}{2397} = 1.4422194409678766
Share
Copied to clipboard
\begin{array}{l}\phantom{2397)}\phantom{1}\\2397\overline{)3457}\\\end{array}
Use the 1^{st} digit 3 from dividend 3457
\begin{array}{l}\phantom{2397)}0\phantom{2}\\2397\overline{)3457}\\\end{array}
Since 3 is less than 2397, use the next digit 4 from dividend 3457 and add 0 to the quotient
\begin{array}{l}\phantom{2397)}0\phantom{3}\\2397\overline{)3457}\\\end{array}
Use the 2^{nd} digit 4 from dividend 3457
\begin{array}{l}\phantom{2397)}00\phantom{4}\\2397\overline{)3457}\\\end{array}
Since 34 is less than 2397, use the next digit 5 from dividend 3457 and add 0 to the quotient
\begin{array}{l}\phantom{2397)}00\phantom{5}\\2397\overline{)3457}\\\end{array}
Use the 3^{rd} digit 5 from dividend 3457
\begin{array}{l}\phantom{2397)}000\phantom{6}\\2397\overline{)3457}\\\end{array}
Since 345 is less than 2397, use the next digit 7 from dividend 3457 and add 0 to the quotient
\begin{array}{l}\phantom{2397)}000\phantom{7}\\2397\overline{)3457}\\\end{array}
Use the 4^{th} digit 7 from dividend 3457
\begin{array}{l}\phantom{2397)}0001\phantom{8}\\2397\overline{)3457}\\\phantom{2397)}\underline{\phantom{}2397\phantom{}}\\\phantom{2397)}1060\\\end{array}
Find closest multiple of 2397 to 3457. We see that 1 \times 2397 = 2397 is the nearest. Now subtract 2397 from 3457 to get reminder 1060. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1060
Since 1060 is less than 2397, stop the division. The reminder is 1060. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}