Evaluate
\frac{345}{49}\approx 7.040816327
Factor
\frac{3 \cdot 5 \cdot 23}{7 ^ {2}} = 7\frac{2}{49} = 7.040816326530612
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)345}\\\end{array}
Use the 1^{st} digit 3 from dividend 345
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)345}\\\end{array}
Since 3 is less than 49, use the next digit 4 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)345}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)345}\\\end{array}
Since 34 is less than 49, use the next digit 5 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)345}\\\end{array}
Use the 3^{rd} digit 5 from dividend 345
\begin{array}{l}\phantom{49)}007\phantom{6}\\49\overline{)345}\\\phantom{49)}\underline{\phantom{}343\phantom{}}\\\phantom{49)99}2\\\end{array}
Find closest multiple of 49 to 345. We see that 7 \times 49 = 343 is the nearest. Now subtract 343 from 345 to get reminder 2. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }2
Since 2 is less than 49, stop the division. The reminder is 2. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}