Evaluate
23
Factor
23
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)345}\\\end{array}
Use the 1^{st} digit 3 from dividend 345
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)345}\\\end{array}
Since 3 is less than 15, use the next digit 4 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)345}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)345}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}4\\\end{array}
Find closest multiple of 15 to 34. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 34 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)345}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}45\\\end{array}
Use the 3^{rd} digit 5 from dividend 345
\begin{array}{l}\phantom{15)}023\phantom{6}\\15\overline{)345}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}45\\\phantom{15)}\underline{\phantom{9}45\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 45. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 45 to get reminder 0. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}