Evaluate
\frac{115}{17}\approx 6.764705882
Factor
\frac{5 \cdot 23}{17} = 6\frac{13}{17} = 6.764705882352941
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)345}\\\end{array}
Use the 1^{st} digit 3 from dividend 345
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)345}\\\end{array}
Since 3 is less than 51, use the next digit 4 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)345}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345
\begin{array}{l}\phantom{51)}00\phantom{4}\\51\overline{)345}\\\end{array}
Since 34 is less than 51, use the next digit 5 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{51)}00\phantom{5}\\51\overline{)345}\\\end{array}
Use the 3^{rd} digit 5 from dividend 345
\begin{array}{l}\phantom{51)}006\phantom{6}\\51\overline{)345}\\\phantom{51)}\underline{\phantom{}306\phantom{}}\\\phantom{51)9}39\\\end{array}
Find closest multiple of 51 to 345. We see that 6 \times 51 = 306 is the nearest. Now subtract 306 from 345 to get reminder 39. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }39
Since 39 is less than 51, stop the division. The reminder is 39. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}