Evaluate
\frac{8500}{3}\approx 2833.333333333
Factor
\frac{2 ^ {2} \cdot 5 ^ {3} \cdot 17}{3} = 2833\frac{1}{3} = 2833.3333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)34000}\\\end{array}
Use the 1^{st} digit 3 from dividend 34000
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)34000}\\\end{array}
Since 3 is less than 12, use the next digit 4 from dividend 34000 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)34000}\\\end{array}
Use the 2^{nd} digit 4 from dividend 34000
\begin{array}{l}\phantom{12)}02\phantom{4}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}10\\\end{array}
Find closest multiple of 12 to 34. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 34 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{12)}02\phantom{5}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 34000
\begin{array}{l}\phantom{12)}028\phantom{6}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{99}}\\\phantom{12)99}4\\\end{array}
Find closest multiple of 12 to 100. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 100 to get reminder 4. Add 8 to quotient.
\begin{array}{l}\phantom{12)}028\phantom{7}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{99}}\\\phantom{12)99}40\\\end{array}
Use the 4^{th} digit 0 from dividend 34000
\begin{array}{l}\phantom{12)}0283\phantom{8}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{99}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{9}}\\\phantom{12)999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{12)}0283\phantom{9}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{99}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{9}}\\\phantom{12)999}40\\\end{array}
Use the 5^{th} digit 0 from dividend 34000
\begin{array}{l}\phantom{12)}02833\phantom{10}\\12\overline{)34000}\\\phantom{12)}\underline{\phantom{}24\phantom{999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{99}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{9}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{}}\\\phantom{12)9999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\text{Quotient: }2833 \text{Reminder: }4
Since 4 is less than 12, stop the division. The reminder is 4. The topmost line 02833 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2833.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}