Evaluate
\frac{68}{9}\approx 7.555555556
Factor
\frac{2 ^ {2} \cdot 17}{3 ^ {2}} = 7\frac{5}{9} = 7.555555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)340}\\\end{array}
Use the 1^{st} digit 3 from dividend 340
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)340}\\\end{array}
Since 3 is less than 45, use the next digit 4 from dividend 340 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)340}\\\end{array}
Use the 2^{nd} digit 4 from dividend 340
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)340}\\\end{array}
Since 34 is less than 45, use the next digit 0 from dividend 340 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)340}\\\end{array}
Use the 3^{rd} digit 0 from dividend 340
\begin{array}{l}\phantom{45)}007\phantom{6}\\45\overline{)340}\\\phantom{45)}\underline{\phantom{}315\phantom{}}\\\phantom{45)9}25\\\end{array}
Find closest multiple of 45 to 340. We see that 7 \times 45 = 315 is the nearest. Now subtract 315 from 340 to get reminder 25. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }25
Since 25 is less than 45, stop the division. The reminder is 25. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}