Factor
2\left(y-2\right)\left(17y+1\right)
Evaluate
2\left(y-2\right)\left(17y+1\right)
Graph
Share
Copied to clipboard
2\left(17y^{2}-33y-2\right)
Factor out 2.
a+b=-33 ab=17\left(-2\right)=-34
Consider 17y^{2}-33y-2. Factor the expression by grouping. First, the expression needs to be rewritten as 17y^{2}+ay+by-2. To find a and b, set up a system to be solved.
1,-34 2,-17
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -34.
1-34=-33 2-17=-15
Calculate the sum for each pair.
a=-34 b=1
The solution is the pair that gives sum -33.
\left(17y^{2}-34y\right)+\left(y-2\right)
Rewrite 17y^{2}-33y-2 as \left(17y^{2}-34y\right)+\left(y-2\right).
17y\left(y-2\right)+y-2
Factor out 17y in 17y^{2}-34y.
\left(y-2\right)\left(17y+1\right)
Factor out common term y-2 by using distributive property.
2\left(y-2\right)\left(17y+1\right)
Rewrite the complete factored expression.
34y^{2}-66y-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 34\left(-4\right)}}{2\times 34}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-66\right)±\sqrt{4356-4\times 34\left(-4\right)}}{2\times 34}
Square -66.
y=\frac{-\left(-66\right)±\sqrt{4356-136\left(-4\right)}}{2\times 34}
Multiply -4 times 34.
y=\frac{-\left(-66\right)±\sqrt{4356+544}}{2\times 34}
Multiply -136 times -4.
y=\frac{-\left(-66\right)±\sqrt{4900}}{2\times 34}
Add 4356 to 544.
y=\frac{-\left(-66\right)±70}{2\times 34}
Take the square root of 4900.
y=\frac{66±70}{2\times 34}
The opposite of -66 is 66.
y=\frac{66±70}{68}
Multiply 2 times 34.
y=\frac{136}{68}
Now solve the equation y=\frac{66±70}{68} when ± is plus. Add 66 to 70.
y=2
Divide 136 by 68.
y=-\frac{4}{68}
Now solve the equation y=\frac{66±70}{68} when ± is minus. Subtract 70 from 66.
y=-\frac{1}{17}
Reduce the fraction \frac{-4}{68} to lowest terms by extracting and canceling out 4.
34y^{2}-66y-4=34\left(y-2\right)\left(y-\left(-\frac{1}{17}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{1}{17} for x_{2}.
34y^{2}-66y-4=34\left(y-2\right)\left(y+\frac{1}{17}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
34y^{2}-66y-4=34\left(y-2\right)\times \frac{17y+1}{17}
Add \frac{1}{17} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
34y^{2}-66y-4=2\left(y-2\right)\left(17y+1\right)
Cancel out 17, the greatest common factor in 34 and 17.
x ^ 2 -\frac{33}{17}x -\frac{2}{17} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 34
r + s = \frac{33}{17} rs = -\frac{2}{17}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{33}{34} - u s = \frac{33}{34} + u
Two numbers r and s sum up to \frac{33}{17} exactly when the average of the two numbers is \frac{1}{2}*\frac{33}{17} = \frac{33}{34}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{33}{34} - u) (\frac{33}{34} + u) = -\frac{2}{17}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{2}{17}
\frac{1089}{1156} - u^2 = -\frac{2}{17}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{2}{17}-\frac{1089}{1156} = -\frac{1225}{1156}
Simplify the expression by subtracting \frac{1089}{1156} on both sides
u^2 = \frac{1225}{1156} u = \pm\sqrt{\frac{1225}{1156}} = \pm \frac{35}{34}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{33}{34} - \frac{35}{34} = -0.059 s = \frac{33}{34} + \frac{35}{34} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}