Solve for q
q=-15
q=13
Share
Copied to clipboard
-q^{2}-2q+534=339
Swap sides so that all variable terms are on the left hand side.
-q^{2}-2q+534-339=0
Subtract 339 from both sides.
-q^{2}-2q+195=0
Subtract 339 from 534 to get 195.
a+b=-2 ab=-195=-195
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -q^{2}+aq+bq+195. To find a and b, set up a system to be solved.
1,-195 3,-65 5,-39 13,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -195.
1-195=-194 3-65=-62 5-39=-34 13-15=-2
Calculate the sum for each pair.
a=13 b=-15
The solution is the pair that gives sum -2.
\left(-q^{2}+13q\right)+\left(-15q+195\right)
Rewrite -q^{2}-2q+195 as \left(-q^{2}+13q\right)+\left(-15q+195\right).
q\left(-q+13\right)+15\left(-q+13\right)
Factor out q in the first and 15 in the second group.
\left(-q+13\right)\left(q+15\right)
Factor out common term -q+13 by using distributive property.
q=13 q=-15
To find equation solutions, solve -q+13=0 and q+15=0.
-q^{2}-2q+534=339
Swap sides so that all variable terms are on the left hand side.
-q^{2}-2q+534-339=0
Subtract 339 from both sides.
-q^{2}-2q+195=0
Subtract 339 from 534 to get 195.
q=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 195}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 195 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 195}}{2\left(-1\right)}
Square -2.
q=\frac{-\left(-2\right)±\sqrt{4+4\times 195}}{2\left(-1\right)}
Multiply -4 times -1.
q=\frac{-\left(-2\right)±\sqrt{4+780}}{2\left(-1\right)}
Multiply 4 times 195.
q=\frac{-\left(-2\right)±\sqrt{784}}{2\left(-1\right)}
Add 4 to 780.
q=\frac{-\left(-2\right)±28}{2\left(-1\right)}
Take the square root of 784.
q=\frac{2±28}{2\left(-1\right)}
The opposite of -2 is 2.
q=\frac{2±28}{-2}
Multiply 2 times -1.
q=\frac{30}{-2}
Now solve the equation q=\frac{2±28}{-2} when ± is plus. Add 2 to 28.
q=-15
Divide 30 by -2.
q=-\frac{26}{-2}
Now solve the equation q=\frac{2±28}{-2} when ± is minus. Subtract 28 from 2.
q=13
Divide -26 by -2.
q=-15 q=13
The equation is now solved.
-q^{2}-2q+534=339
Swap sides so that all variable terms are on the left hand side.
-q^{2}-2q=339-534
Subtract 534 from both sides.
-q^{2}-2q=-195
Subtract 534 from 339 to get -195.
\frac{-q^{2}-2q}{-1}=-\frac{195}{-1}
Divide both sides by -1.
q^{2}+\left(-\frac{2}{-1}\right)q=-\frac{195}{-1}
Dividing by -1 undoes the multiplication by -1.
q^{2}+2q=-\frac{195}{-1}
Divide -2 by -1.
q^{2}+2q=195
Divide -195 by -1.
q^{2}+2q+1^{2}=195+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+2q+1=195+1
Square 1.
q^{2}+2q+1=196
Add 195 to 1.
\left(q+1\right)^{2}=196
Factor q^{2}+2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+1\right)^{2}}=\sqrt{196}
Take the square root of both sides of the equation.
q+1=14 q+1=-14
Simplify.
q=13 q=-15
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}