Evaluate
\frac{339}{97}\approx 3.494845361
Factor
\frac{3 \cdot 113}{97} = 3\frac{48}{97} = 3.4948453608247423
Share
Copied to clipboard
\begin{array}{l}\phantom{97)}\phantom{1}\\97\overline{)339}\\\end{array}
Use the 1^{st} digit 3 from dividend 339
\begin{array}{l}\phantom{97)}0\phantom{2}\\97\overline{)339}\\\end{array}
Since 3 is less than 97, use the next digit 3 from dividend 339 and add 0 to the quotient
\begin{array}{l}\phantom{97)}0\phantom{3}\\97\overline{)339}\\\end{array}
Use the 2^{nd} digit 3 from dividend 339
\begin{array}{l}\phantom{97)}00\phantom{4}\\97\overline{)339}\\\end{array}
Since 33 is less than 97, use the next digit 9 from dividend 339 and add 0 to the quotient
\begin{array}{l}\phantom{97)}00\phantom{5}\\97\overline{)339}\\\end{array}
Use the 3^{rd} digit 9 from dividend 339
\begin{array}{l}\phantom{97)}003\phantom{6}\\97\overline{)339}\\\phantom{97)}\underline{\phantom{}291\phantom{}}\\\phantom{97)9}48\\\end{array}
Find closest multiple of 97 to 339. We see that 3 \times 97 = 291 is the nearest. Now subtract 291 from 339 to get reminder 48. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }48
Since 48 is less than 97, stop the division. The reminder is 48. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}