Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)336}\\\end{array}
Use the 1^{st} digit 3 from dividend 336
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)336}\\\end{array}
Since 3 is less than 84, use the next digit 3 from dividend 336 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)336}\\\end{array}
Use the 2^{nd} digit 3 from dividend 336
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)336}\\\end{array}
Since 33 is less than 84, use the next digit 6 from dividend 336 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)336}\\\end{array}
Use the 3^{rd} digit 6 from dividend 336
\begin{array}{l}\phantom{84)}004\phantom{6}\\84\overline{)336}\\\phantom{84)}\underline{\phantom{}336\phantom{}}\\\phantom{84)999}0\\\end{array}
Find closest multiple of 84 to 336. We see that 4 \times 84 = 336 is the nearest. Now subtract 336 from 336 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 84, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}