Evaluate
\frac{84}{5}=16.8
Factor
\frac{2 ^ {2} \cdot 3 \cdot 7}{5} = 16\frac{4}{5} = 16.8
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)336}\\\end{array}
Use the 1^{st} digit 3 from dividend 336
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)336}\\\end{array}
Since 3 is less than 20, use the next digit 3 from dividend 336 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)336}\\\end{array}
Use the 2^{nd} digit 3 from dividend 336
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)336}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}13\\\end{array}
Find closest multiple of 20 to 33. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 33 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)336}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}136\\\end{array}
Use the 3^{rd} digit 6 from dividend 336
\begin{array}{l}\phantom{20)}016\phantom{6}\\20\overline{)336}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}136\\\phantom{20)}\underline{\phantom{}120\phantom{}}\\\phantom{20)9}16\\\end{array}
Find closest multiple of 20 to 136. We see that 6 \times 20 = 120 is the nearest. Now subtract 120 from 136 to get reminder 16. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }16
Since 16 is less than 20, stop the division. The reminder is 16. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}