Evaluate
32768
Factor
2^{15}
Share
Copied to clipboard
\begin{array}{l}\phantom{1024)}\phantom{1}\\1024\overline{)33554432}\\\end{array}
Use the 1^{st} digit 3 from dividend 33554432
\begin{array}{l}\phantom{1024)}0\phantom{2}\\1024\overline{)33554432}\\\end{array}
Since 3 is less than 1024, use the next digit 3 from dividend 33554432 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}0\phantom{3}\\1024\overline{)33554432}\\\end{array}
Use the 2^{nd} digit 3 from dividend 33554432
\begin{array}{l}\phantom{1024)}00\phantom{4}\\1024\overline{)33554432}\\\end{array}
Since 33 is less than 1024, use the next digit 5 from dividend 33554432 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}00\phantom{5}\\1024\overline{)33554432}\\\end{array}
Use the 3^{rd} digit 5 from dividend 33554432
\begin{array}{l}\phantom{1024)}000\phantom{6}\\1024\overline{)33554432}\\\end{array}
Since 335 is less than 1024, use the next digit 5 from dividend 33554432 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}000\phantom{7}\\1024\overline{)33554432}\\\end{array}
Use the 4^{th} digit 5 from dividend 33554432
\begin{array}{l}\phantom{1024)}0003\phantom{8}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}283\\\end{array}
Find closest multiple of 1024 to 3355. We see that 3 \times 1024 = 3072 is the nearest. Now subtract 3072 from 3355 to get reminder 283. Add 3 to quotient.
\begin{array}{l}\phantom{1024)}0003\phantom{9}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\end{array}
Use the 5^{th} digit 4 from dividend 33554432
\begin{array}{l}\phantom{1024)}00032\phantom{10}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}786\\\end{array}
Find closest multiple of 1024 to 2834. We see that 2 \times 1024 = 2048 is the nearest. Now subtract 2048 from 2834 to get reminder 786. Add 2 to quotient.
\begin{array}{l}\phantom{1024)}00032\phantom{11}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\end{array}
Use the 6^{th} digit 4 from dividend 33554432
\begin{array}{l}\phantom{1024)}000327\phantom{12}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\phantom{1024)}\underline{\phantom{99}7168\phantom{99}}\\\phantom{1024)999}696\\\end{array}
Find closest multiple of 1024 to 7864. We see that 7 \times 1024 = 7168 is the nearest. Now subtract 7168 from 7864 to get reminder 696. Add 7 to quotient.
\begin{array}{l}\phantom{1024)}000327\phantom{13}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\phantom{1024)}\underline{\phantom{99}7168\phantom{99}}\\\phantom{1024)999}6963\\\end{array}
Use the 7^{th} digit 3 from dividend 33554432
\begin{array}{l}\phantom{1024)}0003276\phantom{14}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\phantom{1024)}\underline{\phantom{99}7168\phantom{99}}\\\phantom{1024)999}6963\\\phantom{1024)}\underline{\phantom{999}6144\phantom{9}}\\\phantom{1024)9999}819\\\end{array}
Find closest multiple of 1024 to 6963. We see that 6 \times 1024 = 6144 is the nearest. Now subtract 6144 from 6963 to get reminder 819. Add 6 to quotient.
\begin{array}{l}\phantom{1024)}0003276\phantom{15}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\phantom{1024)}\underline{\phantom{99}7168\phantom{99}}\\\phantom{1024)999}6963\\\phantom{1024)}\underline{\phantom{999}6144\phantom{9}}\\\phantom{1024)9999}8192\\\end{array}
Use the 8^{th} digit 2 from dividend 33554432
\begin{array}{l}\phantom{1024)}00032768\phantom{16}\\1024\overline{)33554432}\\\phantom{1024)}\underline{\phantom{}3072\phantom{9999}}\\\phantom{1024)9}2834\\\phantom{1024)}\underline{\phantom{9}2048\phantom{999}}\\\phantom{1024)99}7864\\\phantom{1024)}\underline{\phantom{99}7168\phantom{99}}\\\phantom{1024)999}6963\\\phantom{1024)}\underline{\phantom{999}6144\phantom{9}}\\\phantom{1024)9999}8192\\\phantom{1024)}\underline{\phantom{9999}8192\phantom{}}\\\phantom{1024)99999999}0\\\end{array}
Find closest multiple of 1024 to 8192. We see that 8 \times 1024 = 8192 is the nearest. Now subtract 8192 from 8192 to get reminder 0. Add 8 to quotient.
\text{Quotient: }32768 \text{Reminder: }0
Since 0 is less than 1024, stop the division. The reminder is 0. The topmost line 00032768 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32768.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}