Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\phantom{\times}999999\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\phantom{\times}999999\phantom{99}\\\phantom{\times}999999\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\phantom{\times}999999\phantom{99}\\\phantom{\times}999999\phantom{999}\\\phantom{\times}999999\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\phantom{\times}999999\phantom{99}\\\phantom{\times}999999\phantom{999}\\\phantom{\times}999999\phantom{9999}\\\underline{\phantom{\times}999999\phantom{99999}}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 333333 with 3. Write the result 999999 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times}333333\\\underline{\times\phantom{}333333}\\\phantom{\times}999999\\\phantom{\times}999999\phantom{9}\\\phantom{\times}999999\phantom{99}\\\phantom{\times}999999\phantom{999}\\\phantom{\times}999999\phantom{9999}\\\underline{\phantom{\times}999999\phantom{99999}}\\\phantom{\times}-558260807\end{array}
Now add the intermediate results to get final answer.