Evaluate
\frac{333}{293}\approx 1.136518771
Factor
\frac{3 ^ {2} \cdot 37}{293} = 1\frac{40}{293} = 1.136518771331058
Share
Copied to clipboard
\begin{array}{l}\phantom{293)}\phantom{1}\\293\overline{)333}\\\end{array}
Use the 1^{st} digit 3 from dividend 333
\begin{array}{l}\phantom{293)}0\phantom{2}\\293\overline{)333}\\\end{array}
Since 3 is less than 293, use the next digit 3 from dividend 333 and add 0 to the quotient
\begin{array}{l}\phantom{293)}0\phantom{3}\\293\overline{)333}\\\end{array}
Use the 2^{nd} digit 3 from dividend 333
\begin{array}{l}\phantom{293)}00\phantom{4}\\293\overline{)333}\\\end{array}
Since 33 is less than 293, use the next digit 3 from dividend 333 and add 0 to the quotient
\begin{array}{l}\phantom{293)}00\phantom{5}\\293\overline{)333}\\\end{array}
Use the 3^{rd} digit 3 from dividend 333
\begin{array}{l}\phantom{293)}001\phantom{6}\\293\overline{)333}\\\phantom{293)}\underline{\phantom{}293\phantom{}}\\\phantom{293)9}40\\\end{array}
Find closest multiple of 293 to 333. We see that 1 \times 293 = 293 is the nearest. Now subtract 293 from 333 to get reminder 40. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }40
Since 40 is less than 293, stop the division. The reminder is 40. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}