Evaluate
\frac{55}{6}\approx 9.166666667
Factor
\frac{5 \cdot 11}{2 \cdot 3} = 9\frac{1}{6} = 9.166666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)3300}\\\end{array}
Use the 1^{st} digit 3 from dividend 3300
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)3300}\\\end{array}
Since 3 is less than 360, use the next digit 3 from dividend 3300 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)3300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 3300
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)3300}\\\end{array}
Since 33 is less than 360, use the next digit 0 from dividend 3300 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)3300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3300
\begin{array}{l}\phantom{360)}000\phantom{6}\\360\overline{)3300}\\\end{array}
Since 330 is less than 360, use the next digit 0 from dividend 3300 and add 0 to the quotient
\begin{array}{l}\phantom{360)}000\phantom{7}\\360\overline{)3300}\\\end{array}
Use the 4^{th} digit 0 from dividend 3300
\begin{array}{l}\phantom{360)}0009\phantom{8}\\360\overline{)3300}\\\phantom{360)}\underline{\phantom{}3240\phantom{}}\\\phantom{360)99}60\\\end{array}
Find closest multiple of 360 to 3300. We see that 9 \times 360 = 3240 is the nearest. Now subtract 3240 from 3300 to get reminder 60. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }60
Since 60 is less than 360, stop the division. The reminder is 60. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}