Factor
\left(3x-5\right)\left(11x-4\right)
Evaluate
\left(3x-5\right)\left(11x-4\right)
Graph
Share
Copied to clipboard
a+b=-67 ab=33\times 20=660
Factor the expression by grouping. First, the expression needs to be rewritten as 33x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
-1,-660 -2,-330 -3,-220 -4,-165 -5,-132 -6,-110 -10,-66 -11,-60 -12,-55 -15,-44 -20,-33 -22,-30
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 660.
-1-660=-661 -2-330=-332 -3-220=-223 -4-165=-169 -5-132=-137 -6-110=-116 -10-66=-76 -11-60=-71 -12-55=-67 -15-44=-59 -20-33=-53 -22-30=-52
Calculate the sum for each pair.
a=-55 b=-12
The solution is the pair that gives sum -67.
\left(33x^{2}-55x\right)+\left(-12x+20\right)
Rewrite 33x^{2}-67x+20 as \left(33x^{2}-55x\right)+\left(-12x+20\right).
11x\left(3x-5\right)-4\left(3x-5\right)
Factor out 11x in the first and -4 in the second group.
\left(3x-5\right)\left(11x-4\right)
Factor out common term 3x-5 by using distributive property.
33x^{2}-67x+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-67\right)±\sqrt{\left(-67\right)^{2}-4\times 33\times 20}}{2\times 33}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-67\right)±\sqrt{4489-4\times 33\times 20}}{2\times 33}
Square -67.
x=\frac{-\left(-67\right)±\sqrt{4489-132\times 20}}{2\times 33}
Multiply -4 times 33.
x=\frac{-\left(-67\right)±\sqrt{4489-2640}}{2\times 33}
Multiply -132 times 20.
x=\frac{-\left(-67\right)±\sqrt{1849}}{2\times 33}
Add 4489 to -2640.
x=\frac{-\left(-67\right)±43}{2\times 33}
Take the square root of 1849.
x=\frac{67±43}{2\times 33}
The opposite of -67 is 67.
x=\frac{67±43}{66}
Multiply 2 times 33.
x=\frac{110}{66}
Now solve the equation x=\frac{67±43}{66} when ± is plus. Add 67 to 43.
x=\frac{5}{3}
Reduce the fraction \frac{110}{66} to lowest terms by extracting and canceling out 22.
x=\frac{24}{66}
Now solve the equation x=\frac{67±43}{66} when ± is minus. Subtract 43 from 67.
x=\frac{4}{11}
Reduce the fraction \frac{24}{66} to lowest terms by extracting and canceling out 6.
33x^{2}-67x+20=33\left(x-\frac{5}{3}\right)\left(x-\frac{4}{11}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{3} for x_{1} and \frac{4}{11} for x_{2}.
33x^{2}-67x+20=33\times \frac{3x-5}{3}\left(x-\frac{4}{11}\right)
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
33x^{2}-67x+20=33\times \frac{3x-5}{3}\times \frac{11x-4}{11}
Subtract \frac{4}{11} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
33x^{2}-67x+20=33\times \frac{\left(3x-5\right)\left(11x-4\right)}{3\times 11}
Multiply \frac{3x-5}{3} times \frac{11x-4}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
33x^{2}-67x+20=33\times \frac{\left(3x-5\right)\left(11x-4\right)}{33}
Multiply 3 times 11.
33x^{2}-67x+20=\left(3x-5\right)\left(11x-4\right)
Cancel out 33, the greatest common factor in 33 and 33.
x ^ 2 -\frac{67}{33}x +\frac{20}{33} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 33
r + s = \frac{67}{33} rs = \frac{20}{33}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{67}{66} - u s = \frac{67}{66} + u
Two numbers r and s sum up to \frac{67}{33} exactly when the average of the two numbers is \frac{1}{2}*\frac{67}{33} = \frac{67}{66}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{67}{66} - u) (\frac{67}{66} + u) = \frac{20}{33}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{20}{33}
\frac{4489}{4356} - u^2 = \frac{20}{33}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{20}{33}-\frac{4489}{4356} = -\frac{1849}{4356}
Simplify the expression by subtracting \frac{4489}{4356} on both sides
u^2 = \frac{1849}{4356} u = \pm\sqrt{\frac{1849}{4356}} = \pm \frac{43}{66}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{67}{66} - \frac{43}{66} = 0.364 s = \frac{67}{66} + \frac{43}{66} = 1.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}