Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{9}{33}
Divide both sides by 33.
x^{2}=\frac{3}{11}
Reduce the fraction \frac{9}{33} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{33}}{11} x=-\frac{\sqrt{33}}{11}
Take the square root of both sides of the equation.
x^{2}=\frac{9}{33}
Divide both sides by 33.
x^{2}=\frac{3}{11}
Reduce the fraction \frac{9}{33} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{3}{11}=0
Subtract \frac{3}{11} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{3}{11}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{3}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{3}{11}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{12}{11}}}{2}
Multiply -4 times -\frac{3}{11}.
x=\frac{0±\frac{2\sqrt{33}}{11}}{2}
Take the square root of \frac{12}{11}.
x=\frac{\sqrt{33}}{11}
Now solve the equation x=\frac{0±\frac{2\sqrt{33}}{11}}{2} when ± is plus.
x=-\frac{\sqrt{33}}{11}
Now solve the equation x=\frac{0±\frac{2\sqrt{33}}{11}}{2} when ± is minus.
x=\frac{\sqrt{33}}{11} x=-\frac{\sqrt{33}}{11}
The equation is now solved.