Solve for j
j=\frac{16}{33}\approx 0.484848485
j=0
Share
Copied to clipboard
j\left(33j-16\right)=0
Factor out j.
j=0 j=\frac{16}{33}
To find equation solutions, solve j=0 and 33j-16=0.
33j^{2}-16j=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\times 33}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 33 for a, -16 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{-\left(-16\right)±16}{2\times 33}
Take the square root of \left(-16\right)^{2}.
j=\frac{16±16}{2\times 33}
The opposite of -16 is 16.
j=\frac{16±16}{66}
Multiply 2 times 33.
j=\frac{32}{66}
Now solve the equation j=\frac{16±16}{66} when ± is plus. Add 16 to 16.
j=\frac{16}{33}
Reduce the fraction \frac{32}{66} to lowest terms by extracting and canceling out 2.
j=\frac{0}{66}
Now solve the equation j=\frac{16±16}{66} when ± is minus. Subtract 16 from 16.
j=0
Divide 0 by 66.
j=\frac{16}{33} j=0
The equation is now solved.
33j^{2}-16j=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{33j^{2}-16j}{33}=\frac{0}{33}
Divide both sides by 33.
j^{2}-\frac{16}{33}j=\frac{0}{33}
Dividing by 33 undoes the multiplication by 33.
j^{2}-\frac{16}{33}j=0
Divide 0 by 33.
j^{2}-\frac{16}{33}j+\left(-\frac{8}{33}\right)^{2}=\left(-\frac{8}{33}\right)^{2}
Divide -\frac{16}{33}, the coefficient of the x term, by 2 to get -\frac{8}{33}. Then add the square of -\frac{8}{33} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
j^{2}-\frac{16}{33}j+\frac{64}{1089}=\frac{64}{1089}
Square -\frac{8}{33} by squaring both the numerator and the denominator of the fraction.
\left(j-\frac{8}{33}\right)^{2}=\frac{64}{1089}
Factor j^{2}-\frac{16}{33}j+\frac{64}{1089}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(j-\frac{8}{33}\right)^{2}}=\sqrt{\frac{64}{1089}}
Take the square root of both sides of the equation.
j-\frac{8}{33}=\frac{8}{33} j-\frac{8}{33}=-\frac{8}{33}
Simplify.
j=\frac{16}{33} j=0
Add \frac{8}{33} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}