Solve for x
x = -\frac{75}{61} = -1\frac{14}{61} \approx -1.229508197
Graph
Share
Copied to clipboard
66x+3\left(65-36\right)=12+5x
Multiply 33 and 2 to get 66.
66x+3\times 29=12+5x
Subtract 36 from 65 to get 29.
66x+87=12+5x
Multiply 3 and 29 to get 87.
66x+87-5x=12
Subtract 5x from both sides.
61x+87=12
Combine 66x and -5x to get 61x.
61x=12-87
Subtract 87 from both sides.
61x=-75
Subtract 87 from 12 to get -75.
x=\frac{-75}{61}
Divide both sides by 61.
x=-\frac{75}{61}
Fraction \frac{-75}{61} can be rewritten as -\frac{75}{61} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}