Evaluate
\frac{1}{72}\approx 0.013888889
Factor
\frac{1}{2 ^ {3} \cdot 3 ^ {2}} = 0.013888888888888888
Share
Copied to clipboard
\frac{\frac{\frac{99+1}{3}\left(-0.1\right)^{2}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Multiply 33 and 3 to get 99.
\frac{\frac{\frac{100}{3}\left(-0.1\right)^{2}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Add 99 and 1 to get 100.
\frac{\frac{\frac{100}{3}\times 0.01}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Calculate -0.1 to the power of 2 and get 0.01.
\frac{\frac{\frac{1}{3}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Multiply \frac{100}{3} and 0.01 to get \frac{1}{3}.
\frac{\frac{\frac{1}{3}}{5.76}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Calculate -2.4 to the power of 2 and get 5.76.
\frac{\frac{1}{3\times 5.76}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Express \frac{\frac{1}{3}}{5.76} as a single fraction.
\frac{\frac{1}{17.28}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Multiply 3 and 5.76 to get 17.28.
\frac{\frac{100}{1728}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Expand \frac{1}{17.28} by multiplying both numerator and the denominator by 100.
\frac{\frac{25}{432}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Reduce the fraction \frac{100}{1728} to lowest terms by extracting and canceling out 4.
\frac{\frac{25}{432}}{\frac{24+1}{6}\left(-0.2\right)^{0}}
Multiply 4 and 6 to get 24.
\frac{\frac{25}{432}}{\frac{25}{6}\left(-0.2\right)^{0}}
Add 24 and 1 to get 25.
\frac{\frac{25}{432}}{\frac{25}{6}\times 1}
Calculate -0.2 to the power of 0 and get 1.
\frac{\frac{25}{432}}{\frac{25}{6}}
Multiply \frac{25}{6} and 1 to get \frac{25}{6}.
\frac{25}{432}\times \frac{6}{25}
Divide \frac{25}{432} by \frac{25}{6} by multiplying \frac{25}{432} by the reciprocal of \frac{25}{6}.
\frac{1}{72}
Multiply \frac{25}{432} and \frac{6}{25} to get \frac{1}{72}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}