Evaluate
\frac{33}{16}=2.0625
Factor
\frac{3 \cdot 11}{2 ^ {4}} = 2\frac{1}{16} = 2.0625
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)33}\\\end{array}
Use the 1^{st} digit 3 from dividend 33
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)33}\\\end{array}
Since 3 is less than 16, use the next digit 3 from dividend 33 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)33}\\\end{array}
Use the 2^{nd} digit 3 from dividend 33
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)33}\\\phantom{16)}\underline{\phantom{}32\phantom{}}\\\phantom{16)9}1\\\end{array}
Find closest multiple of 16 to 33. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 33 to get reminder 1. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }1
Since 1 is less than 16, stop the division. The reminder is 1. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}