Evaluate
\frac{328493}{248}\approx 1324.568548387
Factor
\frac{11 \cdot 29863}{2 ^ {3} \cdot 31} = 1324\frac{141}{248} = 1324.5685483870968
Share
Copied to clipboard
\begin{array}{l}\phantom{248)}\phantom{1}\\248\overline{)328493}\\\end{array}
Use the 1^{st} digit 3 from dividend 328493
\begin{array}{l}\phantom{248)}0\phantom{2}\\248\overline{)328493}\\\end{array}
Since 3 is less than 248, use the next digit 2 from dividend 328493 and add 0 to the quotient
\begin{array}{l}\phantom{248)}0\phantom{3}\\248\overline{)328493}\\\end{array}
Use the 2^{nd} digit 2 from dividend 328493
\begin{array}{l}\phantom{248)}00\phantom{4}\\248\overline{)328493}\\\end{array}
Since 32 is less than 248, use the next digit 8 from dividend 328493 and add 0 to the quotient
\begin{array}{l}\phantom{248)}00\phantom{5}\\248\overline{)328493}\\\end{array}
Use the 3^{rd} digit 8 from dividend 328493
\begin{array}{l}\phantom{248)}001\phantom{6}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}80\\\end{array}
Find closest multiple of 248 to 328. We see that 1 \times 248 = 248 is the nearest. Now subtract 248 from 328 to get reminder 80. Add 1 to quotient.
\begin{array}{l}\phantom{248)}001\phantom{7}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\end{array}
Use the 4^{th} digit 4 from dividend 328493
\begin{array}{l}\phantom{248)}0013\phantom{8}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\phantom{248)}\underline{\phantom{9}744\phantom{99}}\\\phantom{248)99}60\\\end{array}
Find closest multiple of 248 to 804. We see that 3 \times 248 = 744 is the nearest. Now subtract 744 from 804 to get reminder 60. Add 3 to quotient.
\begin{array}{l}\phantom{248)}0013\phantom{9}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\phantom{248)}\underline{\phantom{9}744\phantom{99}}\\\phantom{248)99}609\\\end{array}
Use the 5^{th} digit 9 from dividend 328493
\begin{array}{l}\phantom{248)}00132\phantom{10}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\phantom{248)}\underline{\phantom{9}744\phantom{99}}\\\phantom{248)99}609\\\phantom{248)}\underline{\phantom{99}496\phantom{9}}\\\phantom{248)99}113\\\end{array}
Find closest multiple of 248 to 609. We see that 2 \times 248 = 496 is the nearest. Now subtract 496 from 609 to get reminder 113. Add 2 to quotient.
\begin{array}{l}\phantom{248)}00132\phantom{11}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\phantom{248)}\underline{\phantom{9}744\phantom{99}}\\\phantom{248)99}609\\\phantom{248)}\underline{\phantom{99}496\phantom{9}}\\\phantom{248)99}1133\\\end{array}
Use the 6^{th} digit 3 from dividend 328493
\begin{array}{l}\phantom{248)}001324\phantom{12}\\248\overline{)328493}\\\phantom{248)}\underline{\phantom{}248\phantom{999}}\\\phantom{248)9}804\\\phantom{248)}\underline{\phantom{9}744\phantom{99}}\\\phantom{248)99}609\\\phantom{248)}\underline{\phantom{99}496\phantom{9}}\\\phantom{248)99}1133\\\phantom{248)}\underline{\phantom{999}992\phantom{}}\\\phantom{248)999}141\\\end{array}
Find closest multiple of 248 to 1133. We see that 4 \times 248 = 992 is the nearest. Now subtract 992 from 1133 to get reminder 141. Add 4 to quotient.
\text{Quotient: }1324 \text{Reminder: }141
Since 141 is less than 248, stop the division. The reminder is 141. The topmost line 001324 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1324.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}