Evaluate
\frac{325158}{7247}\approx 44.867945357
Factor
\frac{2 \cdot 3 \cdot 54193}{7247} = 44\frac{6290}{7247} = 44.86794535669932
Share
Copied to clipboard
\begin{array}{l}\phantom{7247)}\phantom{1}\\7247\overline{)325158}\\\end{array}
Use the 1^{st} digit 3 from dividend 325158
\begin{array}{l}\phantom{7247)}0\phantom{2}\\7247\overline{)325158}\\\end{array}
Since 3 is less than 7247, use the next digit 2 from dividend 325158 and add 0 to the quotient
\begin{array}{l}\phantom{7247)}0\phantom{3}\\7247\overline{)325158}\\\end{array}
Use the 2^{nd} digit 2 from dividend 325158
\begin{array}{l}\phantom{7247)}00\phantom{4}\\7247\overline{)325158}\\\end{array}
Since 32 is less than 7247, use the next digit 5 from dividend 325158 and add 0 to the quotient
\begin{array}{l}\phantom{7247)}00\phantom{5}\\7247\overline{)325158}\\\end{array}
Use the 3^{rd} digit 5 from dividend 325158
\begin{array}{l}\phantom{7247)}000\phantom{6}\\7247\overline{)325158}\\\end{array}
Since 325 is less than 7247, use the next digit 1 from dividend 325158 and add 0 to the quotient
\begin{array}{l}\phantom{7247)}000\phantom{7}\\7247\overline{)325158}\\\end{array}
Use the 4^{th} digit 1 from dividend 325158
\begin{array}{l}\phantom{7247)}0000\phantom{8}\\7247\overline{)325158}\\\end{array}
Since 3251 is less than 7247, use the next digit 5 from dividend 325158 and add 0 to the quotient
\begin{array}{l}\phantom{7247)}0000\phantom{9}\\7247\overline{)325158}\\\end{array}
Use the 5^{th} digit 5 from dividend 325158
\begin{array}{l}\phantom{7247)}00004\phantom{10}\\7247\overline{)325158}\\\phantom{7247)}\underline{\phantom{}28988\phantom{9}}\\\phantom{7247)9}3527\\\end{array}
Find closest multiple of 7247 to 32515. We see that 4 \times 7247 = 28988 is the nearest. Now subtract 28988 from 32515 to get reminder 3527. Add 4 to quotient.
\begin{array}{l}\phantom{7247)}00004\phantom{11}\\7247\overline{)325158}\\\phantom{7247)}\underline{\phantom{}28988\phantom{9}}\\\phantom{7247)9}35278\\\end{array}
Use the 6^{th} digit 8 from dividend 325158
\begin{array}{l}\phantom{7247)}000044\phantom{12}\\7247\overline{)325158}\\\phantom{7247)}\underline{\phantom{}28988\phantom{9}}\\\phantom{7247)9}35278\\\phantom{7247)}\underline{\phantom{9}28988\phantom{}}\\\phantom{7247)99}6290\\\end{array}
Find closest multiple of 7247 to 35278. We see that 4 \times 7247 = 28988 is the nearest. Now subtract 28988 from 35278 to get reminder 6290. Add 4 to quotient.
\text{Quotient: }44 \text{Reminder: }6290
Since 6290 is less than 7247, stop the division. The reminder is 6290. The topmost line 000044 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}