Evaluate
\frac{13}{10}=1.3
Factor
\frac{13}{2 \cdot 5} = 1\frac{3}{10} = 1.3
Share
Copied to clipboard
\begin{array}{l}\phantom{2500000)}\phantom{1}\\2500000\overline{)3250000}\\\end{array}
Use the 1^{st} digit 3 from dividend 3250000
\begin{array}{l}\phantom{2500000)}0\phantom{2}\\2500000\overline{)3250000}\\\end{array}
Since 3 is less than 2500000, use the next digit 2 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}0\phantom{3}\\2500000\overline{)3250000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 3250000
\begin{array}{l}\phantom{2500000)}00\phantom{4}\\2500000\overline{)3250000}\\\end{array}
Since 32 is less than 2500000, use the next digit 5 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}00\phantom{5}\\2500000\overline{)3250000}\\\end{array}
Use the 3^{rd} digit 5 from dividend 3250000
\begin{array}{l}\phantom{2500000)}000\phantom{6}\\2500000\overline{)3250000}\\\end{array}
Since 325 is less than 2500000, use the next digit 0 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}000\phantom{7}\\2500000\overline{)3250000}\\\end{array}
Use the 4^{th} digit 0 from dividend 3250000
\begin{array}{l}\phantom{2500000)}0000\phantom{8}\\2500000\overline{)3250000}\\\end{array}
Since 3250 is less than 2500000, use the next digit 0 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}0000\phantom{9}\\2500000\overline{)3250000}\\\end{array}
Use the 5^{th} digit 0 from dividend 3250000
\begin{array}{l}\phantom{2500000)}00000\phantom{10}\\2500000\overline{)3250000}\\\end{array}
Since 32500 is less than 2500000, use the next digit 0 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}00000\phantom{11}\\2500000\overline{)3250000}\\\end{array}
Use the 6^{th} digit 0 from dividend 3250000
\begin{array}{l}\phantom{2500000)}000000\phantom{12}\\2500000\overline{)3250000}\\\end{array}
Since 325000 is less than 2500000, use the next digit 0 from dividend 3250000 and add 0 to the quotient
\begin{array}{l}\phantom{2500000)}000000\phantom{13}\\2500000\overline{)3250000}\\\end{array}
Use the 7^{th} digit 0 from dividend 3250000
\begin{array}{l}\phantom{2500000)}0000001\phantom{14}\\2500000\overline{)3250000}\\\phantom{2500000)}\underline{\phantom{}2500000\phantom{}}\\\phantom{2500000)9}750000\\\end{array}
Find closest multiple of 2500000 to 3250000. We see that 1 \times 2500000 = 2500000 is the nearest. Now subtract 2500000 from 3250000 to get reminder 750000. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }750000
Since 750000 is less than 2500000, stop the division. The reminder is 750000. The topmost line 0000001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}