Evaluate
\frac{325}{33}\approx 9.848484848
Factor
\frac{5 ^ {2} \cdot 13}{3 \cdot 11} = 9\frac{28}{33} = 9.848484848484848
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)325}\\\end{array}
Use the 1^{st} digit 3 from dividend 325
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)325}\\\end{array}
Since 3 is less than 33, use the next digit 2 from dividend 325 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)325}\\\end{array}
Use the 2^{nd} digit 2 from dividend 325
\begin{array}{l}\phantom{33)}00\phantom{4}\\33\overline{)325}\\\end{array}
Since 32 is less than 33, use the next digit 5 from dividend 325 and add 0 to the quotient
\begin{array}{l}\phantom{33)}00\phantom{5}\\33\overline{)325}\\\end{array}
Use the 3^{rd} digit 5 from dividend 325
\begin{array}{l}\phantom{33)}009\phantom{6}\\33\overline{)325}\\\phantom{33)}\underline{\phantom{}297\phantom{}}\\\phantom{33)9}28\\\end{array}
Find closest multiple of 33 to 325. We see that 9 \times 33 = 297 is the nearest. Now subtract 297 from 325 to get reminder 28. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }28
Since 28 is less than 33, stop the division. The reminder is 28. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}