Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{325\times 4}{\frac{2^{4}+3\times 2^{3}}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 2 to the power of 2 and get 4.
\frac{1300}{\frac{2^{4}+3\times 2^{3}}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Multiply 325 and 4 to get 1300.
\frac{1300}{\frac{16+3\times 2^{3}}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 2 to the power of 4 and get 16.
\frac{1300}{\frac{16+3\times 8}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 2 to the power of 3 and get 8.
\frac{1300}{\frac{16+24}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Multiply 3 and 8 to get 24.
\frac{1300}{\frac{40}{5}+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Add 16 and 24 to get 40.
\frac{1300}{8+\frac{2^{2}\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Divide 40 by 5 to get 8.
\frac{1300}{8+\frac{4\times 3\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 2 to the power of 2 and get 4.
\frac{1300}{8+\frac{12\times 5+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Multiply 4 and 3 to get 12.
\frac{1300}{8+\frac{60+\left(3\times 2^{2}\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Multiply 12 and 5 to get 60.
\frac{1300}{8+\frac{60+\left(3\times 4\right)^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 2 to the power of 2 and get 4.
\frac{1300}{8+\frac{60+12^{2}-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Multiply 3 and 4 to get 12.
\frac{1300}{8+\frac{60+144-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Calculate 12 to the power of 2 and get 144.
\frac{1300}{8+\frac{204-\frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3}-\frac{12^{2}}{3^{2}}}{4}}
Add 60 and 144 to get 204.
\frac{1300}{8+\frac{204-\frac{2^{3}\times 3^{2}\times 5}{6\times 3}-\frac{12^{2}}{3^{2}}}{4}}
Express \frac{\frac{2^{3}\times 3^{2}\times 5}{6}}{3} as a single fraction.
\frac{1300}{8+\frac{204-\frac{3\times 5\times 2^{3}}{6}-\frac{12^{2}}{3^{2}}}{4}}
Cancel out 3 in both numerator and denominator.
\frac{1300}{8+\frac{204-\frac{5\times 2^{3}}{2}-\frac{12^{2}}{3^{2}}}{4}}
Cancel out 3 in both numerator and denominator.
\frac{1300}{8+\frac{204-5\times 2^{2}-\frac{12^{2}}{3^{2}}}{4}}
Cancel out 2 in both numerator and denominator.
\frac{1300}{8+\frac{204-5\times 2^{2}-\frac{144}{3^{2}}}{4}}
Calculate 12 to the power of 2 and get 144.
\frac{1300}{8+\frac{204-5\times 2^{2}-\frac{144}{9}}{4}}
Calculate 3 to the power of 2 and get 9.
\frac{1300}{8+\frac{204-5\times 2^{2}-16}{4}}
Divide 144 by 9 to get 16.
\frac{1300}{8+\frac{188-5\times 2^{2}}{4}}
Subtract 16 from 204 to get 188.
\frac{1300}{8+\frac{188-5\times 4}{4}}
Calculate 2 to the power of 2 and get 4.
\frac{1300}{8+\frac{188-20}{4}}
Multiply 5 and 4 to get 20.
\frac{1300}{8+\frac{168}{4}}
Subtract 20 from 188 to get 168.
\frac{1300}{8+42}
Divide 168 by 4 to get 42.
\frac{1300}{50}
Add 8 and 42 to get 50.
26
Divide 1300 by 50 to get 26.