Evaluate
\frac{3241}{506}\approx 6.40513834
Factor
\frac{7 \cdot 463}{2 \cdot 11 \cdot 23} = 6\frac{205}{506} = 6.405138339920948
Share
Copied to clipboard
\begin{array}{l}\phantom{506)}\phantom{1}\\506\overline{)3241}\\\end{array}
Use the 1^{st} digit 3 from dividend 3241
\begin{array}{l}\phantom{506)}0\phantom{2}\\506\overline{)3241}\\\end{array}
Since 3 is less than 506, use the next digit 2 from dividend 3241 and add 0 to the quotient
\begin{array}{l}\phantom{506)}0\phantom{3}\\506\overline{)3241}\\\end{array}
Use the 2^{nd} digit 2 from dividend 3241
\begin{array}{l}\phantom{506)}00\phantom{4}\\506\overline{)3241}\\\end{array}
Since 32 is less than 506, use the next digit 4 from dividend 3241 and add 0 to the quotient
\begin{array}{l}\phantom{506)}00\phantom{5}\\506\overline{)3241}\\\end{array}
Use the 3^{rd} digit 4 from dividend 3241
\begin{array}{l}\phantom{506)}000\phantom{6}\\506\overline{)3241}\\\end{array}
Since 324 is less than 506, use the next digit 1 from dividend 3241 and add 0 to the quotient
\begin{array}{l}\phantom{506)}000\phantom{7}\\506\overline{)3241}\\\end{array}
Use the 4^{th} digit 1 from dividend 3241
\begin{array}{l}\phantom{506)}0006\phantom{8}\\506\overline{)3241}\\\phantom{506)}\underline{\phantom{}3036\phantom{}}\\\phantom{506)9}205\\\end{array}
Find closest multiple of 506 to 3241. We see that 6 \times 506 = 3036 is the nearest. Now subtract 3036 from 3241 to get reminder 205. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }205
Since 205 is less than 506, stop the division. The reminder is 205. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}