Evaluate
\frac{9}{4}=2.25
Factor
\frac{3 ^ {2}}{2 ^ {2}} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)324}\\\end{array}
Use the 1^{st} digit 3 from dividend 324
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)324}\\\end{array}
Since 3 is less than 144, use the next digit 2 from dividend 324 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)324}\\\end{array}
Use the 2^{nd} digit 2 from dividend 324
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)324}\\\end{array}
Since 32 is less than 144, use the next digit 4 from dividend 324 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)324}\\\end{array}
Use the 3^{rd} digit 4 from dividend 324
\begin{array}{l}\phantom{144)}002\phantom{6}\\144\overline{)324}\\\phantom{144)}\underline{\phantom{}288\phantom{}}\\\phantom{144)9}36\\\end{array}
Find closest multiple of 144 to 324. We see that 2 \times 144 = 288 is the nearest. Now subtract 288 from 324 to get reminder 36. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }36
Since 36 is less than 144, stop the division. The reminder is 36. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}