Evaluate
\frac{107}{15}\approx 7.133333333
Factor
\frac{107}{3 \cdot 5} = 7\frac{2}{15} = 7.133333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)321}\\\end{array}
Use the 1^{st} digit 3 from dividend 321
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)321}\\\end{array}
Since 3 is less than 45, use the next digit 2 from dividend 321 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)321}\\\end{array}
Use the 2^{nd} digit 2 from dividend 321
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)321}\\\end{array}
Since 32 is less than 45, use the next digit 1 from dividend 321 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)321}\\\end{array}
Use the 3^{rd} digit 1 from dividend 321
\begin{array}{l}\phantom{45)}007\phantom{6}\\45\overline{)321}\\\phantom{45)}\underline{\phantom{}315\phantom{}}\\\phantom{45)99}6\\\end{array}
Find closest multiple of 45 to 321. We see that 7 \times 45 = 315 is the nearest. Now subtract 315 from 321 to get reminder 6. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }6
Since 6 is less than 45, stop the division. The reminder is 6. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}