Evaluate
\frac{106675}{7}\approx 15239.285714286
Factor
\frac{5 ^ {2} \cdot 17 \cdot 251}{7} = 15239\frac{2}{7} = 15239.285714285714
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)320025}\\\end{array}
Use the 1^{st} digit 3 from dividend 320025
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)320025}\\\end{array}
Since 3 is less than 21, use the next digit 2 from dividend 320025 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)320025}\\\end{array}
Use the 2^{nd} digit 2 from dividend 320025
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}11\\\end{array}
Find closest multiple of 21 to 32. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 32 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 320025
\begin{array}{l}\phantom{21)}015\phantom{6}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}5\\\end{array}
Find closest multiple of 21 to 110. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 110 to get reminder 5. Add 5 to quotient.
\begin{array}{l}\phantom{21)}015\phantom{7}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\end{array}
Use the 4^{th} digit 0 from dividend 320025
\begin{array}{l}\phantom{21)}0152\phantom{8}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\phantom{21)}\underline{\phantom{99}42\phantom{99}}\\\phantom{21)999}8\\\end{array}
Find closest multiple of 21 to 50. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 50 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{21)}0152\phantom{9}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\phantom{21)}\underline{\phantom{99}42\phantom{99}}\\\phantom{21)999}82\\\end{array}
Use the 5^{th} digit 2 from dividend 320025
\begin{array}{l}\phantom{21)}01523\phantom{10}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\phantom{21)}\underline{\phantom{99}42\phantom{99}}\\\phantom{21)999}82\\\phantom{21)}\underline{\phantom{999}63\phantom{9}}\\\phantom{21)999}19\\\end{array}
Find closest multiple of 21 to 82. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 82 to get reminder 19. Add 3 to quotient.
\begin{array}{l}\phantom{21)}01523\phantom{11}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\phantom{21)}\underline{\phantom{99}42\phantom{99}}\\\phantom{21)999}82\\\phantom{21)}\underline{\phantom{999}63\phantom{9}}\\\phantom{21)999}195\\\end{array}
Use the 6^{th} digit 5 from dividend 320025
\begin{array}{l}\phantom{21)}015239\phantom{12}\\21\overline{)320025}\\\phantom{21)}\underline{\phantom{}21\phantom{9999}}\\\phantom{21)}110\\\phantom{21)}\underline{\phantom{}105\phantom{999}}\\\phantom{21)99}50\\\phantom{21)}\underline{\phantom{99}42\phantom{99}}\\\phantom{21)999}82\\\phantom{21)}\underline{\phantom{999}63\phantom{9}}\\\phantom{21)999}195\\\phantom{21)}\underline{\phantom{999}189\phantom{}}\\\phantom{21)99999}6\\\end{array}
Find closest multiple of 21 to 195. We see that 9 \times 21 = 189 is the nearest. Now subtract 189 from 195 to get reminder 6. Add 9 to quotient.
\text{Quotient: }15239 \text{Reminder: }6
Since 6 is less than 21, stop the division. The reminder is 6. The topmost line 015239 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15239.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}