Solve for x
x = \frac{3 \sqrt{2289} - 11}{2} \approx 66.265242283
x=\frac{-3\sqrt{2289}-11}{2}\approx -77.265242283
Graph
Share
Copied to clipboard
5120-x^{2}-11x=0
Combine 320x and -320x to get 0.
-x^{2}-11x+5120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\times 5120}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -11 for b, and 5120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\times 5120}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\times 5120}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121+20480}}{2\left(-1\right)}
Multiply 4 times 5120.
x=\frac{-\left(-11\right)±\sqrt{20601}}{2\left(-1\right)}
Add 121 to 20480.
x=\frac{-\left(-11\right)±3\sqrt{2289}}{2\left(-1\right)}
Take the square root of 20601.
x=\frac{11±3\sqrt{2289}}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±3\sqrt{2289}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{2289}+11}{-2}
Now solve the equation x=\frac{11±3\sqrt{2289}}{-2} when ± is plus. Add 11 to 3\sqrt{2289}.
x=\frac{-3\sqrt{2289}-11}{2}
Divide 11+3\sqrt{2289} by -2.
x=\frac{11-3\sqrt{2289}}{-2}
Now solve the equation x=\frac{11±3\sqrt{2289}}{-2} when ± is minus. Subtract 3\sqrt{2289} from 11.
x=\frac{3\sqrt{2289}-11}{2}
Divide 11-3\sqrt{2289} by -2.
x=\frac{-3\sqrt{2289}-11}{2} x=\frac{3\sqrt{2289}-11}{2}
The equation is now solved.
5120-x^{2}-11x=0
Combine 320x and -320x to get 0.
-x^{2}-11x=-5120
Subtract 5120 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}-11x}{-1}=-\frac{5120}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{11}{-1}\right)x=-\frac{5120}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+11x=-\frac{5120}{-1}
Divide -11 by -1.
x^{2}+11x=5120
Divide -5120 by -1.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=5120+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=5120+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{20601}{4}
Add 5120 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{20601}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{20601}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{3\sqrt{2289}}{2} x+\frac{11}{2}=-\frac{3\sqrt{2289}}{2}
Simplify.
x=\frac{3\sqrt{2289}-11}{2} x=\frac{-3\sqrt{2289}-11}{2}
Subtract \frac{11}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}