Evaluate
\frac{160}{31}\approx 5.161290323
Factor
\frac{2 ^ {5} \cdot 5}{31} = 5\frac{5}{31} = 5.161290322580645
Share
Copied to clipboard
\begin{array}{l}\phantom{62)}\phantom{1}\\62\overline{)320}\\\end{array}
Use the 1^{st} digit 3 from dividend 320
\begin{array}{l}\phantom{62)}0\phantom{2}\\62\overline{)320}\\\end{array}
Since 3 is less than 62, use the next digit 2 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{62)}0\phantom{3}\\62\overline{)320}\\\end{array}
Use the 2^{nd} digit 2 from dividend 320
\begin{array}{l}\phantom{62)}00\phantom{4}\\62\overline{)320}\\\end{array}
Since 32 is less than 62, use the next digit 0 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{62)}00\phantom{5}\\62\overline{)320}\\\end{array}
Use the 3^{rd} digit 0 from dividend 320
\begin{array}{l}\phantom{62)}005\phantom{6}\\62\overline{)320}\\\phantom{62)}\underline{\phantom{}310\phantom{}}\\\phantom{62)9}10\\\end{array}
Find closest multiple of 62 to 320. We see that 5 \times 62 = 310 is the nearest. Now subtract 310 from 320 to get reminder 10. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }10
Since 10 is less than 62, stop the division. The reminder is 10. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}