32.3 \% \cdot N = 28,100
Solve for N
N = \frac{28100000}{323} = 86996\frac{292}{323} \approx 86996.904024768
Share
Copied to clipboard
\frac{323}{1000}N=28100
Expand \frac{32.3}{100} by multiplying both numerator and the denominator by 10.
N=28100\times \frac{1000}{323}
Multiply both sides by \frac{1000}{323}, the reciprocal of \frac{323}{1000}.
N=\frac{28100\times 1000}{323}
Express 28100\times \frac{1000}{323} as a single fraction.
N=\frac{28100000}{323}
Multiply 28100 and 1000 to get 28100000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}