Solve for x
x = \frac{17}{13} = 1\frac{4}{13} \approx 1.307692308
Graph
Share
Copied to clipboard
32-\left(4+6x-5x-20\right)=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
Use the distributive property to multiply -5 by x+4.
32-\left(4+x-20\right)=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
Combine 6x and -5x to get x.
32-\left(-16+x\right)=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
Subtract 20 from 4 to get -16.
32-\left(-16\right)-x=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
To find the opposite of -16+x, find the opposite of each term.
32+16-x=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
The opposite of -16 is 16.
48-x=4\times 3\times 4-\left(6\left(3x-4\right)+7-4x\right)
Add 32 and 16 to get 48.
48-x=12\times 4-\left(6\left(3x-4\right)+7-4x\right)
Multiply 4 and 3 to get 12.
48-x=48-\left(6\left(3x-4\right)+7-4x\right)
Multiply 12 and 4 to get 48.
48-x=48-\left(18x-24+7-4x\right)
Use the distributive property to multiply 6 by 3x-4.
48-x=48-\left(18x-17-4x\right)
Add -24 and 7 to get -17.
48-x=48-\left(14x-17\right)
Combine 18x and -4x to get 14x.
48-x=48-14x-\left(-17\right)
To find the opposite of 14x-17, find the opposite of each term.
48-x=48-14x+17
The opposite of -17 is 17.
48-x=65-14x
Add 48 and 17 to get 65.
48-x+14x=65
Add 14x to both sides.
48+13x=65
Combine -x and 14x to get 13x.
13x=65-48
Subtract 48 from both sides.
13x=17
Subtract 48 from 65 to get 17.
x=\frac{17}{13}
Divide both sides by 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}