Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32=40x^{2}+80x
Use the distributive property to multiply 5x by 8x+16.
40x^{2}+80x=32
Swap sides so that all variable terms are on the left hand side.
40x^{2}+80x-32=0
Subtract 32 from both sides.
x=\frac{-80±\sqrt{80^{2}-4\times 40\left(-32\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 80 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 40\left(-32\right)}}{2\times 40}
Square 80.
x=\frac{-80±\sqrt{6400-160\left(-32\right)}}{2\times 40}
Multiply -4 times 40.
x=\frac{-80±\sqrt{6400+5120}}{2\times 40}
Multiply -160 times -32.
x=\frac{-80±\sqrt{11520}}{2\times 40}
Add 6400 to 5120.
x=\frac{-80±48\sqrt{5}}{2\times 40}
Take the square root of 11520.
x=\frac{-80±48\sqrt{5}}{80}
Multiply 2 times 40.
x=\frac{48\sqrt{5}-80}{80}
Now solve the equation x=\frac{-80±48\sqrt{5}}{80} when ± is plus. Add -80 to 48\sqrt{5}.
x=\frac{3\sqrt{5}}{5}-1
Divide -80+48\sqrt{5} by 80.
x=\frac{-48\sqrt{5}-80}{80}
Now solve the equation x=\frac{-80±48\sqrt{5}}{80} when ± is minus. Subtract 48\sqrt{5} from -80.
x=-\frac{3\sqrt{5}}{5}-1
Divide -80-48\sqrt{5} by 80.
x=\frac{3\sqrt{5}}{5}-1 x=-\frac{3\sqrt{5}}{5}-1
The equation is now solved.
32=40x^{2}+80x
Use the distributive property to multiply 5x by 8x+16.
40x^{2}+80x=32
Swap sides so that all variable terms are on the left hand side.
\frac{40x^{2}+80x}{40}=\frac{32}{40}
Divide both sides by 40.
x^{2}+\frac{80}{40}x=\frac{32}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}+2x=\frac{32}{40}
Divide 80 by 40.
x^{2}+2x=\frac{4}{5}
Reduce the fraction \frac{32}{40} to lowest terms by extracting and canceling out 8.
x^{2}+2x+1^{2}=\frac{4}{5}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{4}{5}+1
Square 1.
x^{2}+2x+1=\frac{9}{5}
Add \frac{4}{5} to 1.
\left(x+1\right)^{2}=\frac{9}{5}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{9}{5}}
Take the square root of both sides of the equation.
x+1=\frac{3\sqrt{5}}{5} x+1=-\frac{3\sqrt{5}}{5}
Simplify.
x=\frac{3\sqrt{5}}{5}-1 x=-\frac{3\sqrt{5}}{5}-1
Subtract 1 from both sides of the equation.