Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(16y^{4}-x^{4}y^{4}\right)
Factor out 2.
y^{4}\left(16-x^{4}\right)
Consider 16y^{4}-x^{4}y^{4}. Factor out y^{4}.
\left(4+x^{2}\right)\left(4-x^{2}\right)
Consider 16-x^{4}. Rewrite 16-x^{4} as 4^{2}-\left(-x^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}+4\right)\left(-x^{2}+4\right)
Reorder the terms.
\left(2-x\right)\left(2+x\right)
Consider -x^{2}+4. Rewrite -x^{2}+4 as 2^{2}-x^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-x+2\right)\left(x+2\right)
Reorder the terms.
2y^{4}\left(x^{2}+4\right)\left(-x+2\right)\left(x+2\right)
Rewrite the complete factored expression. Polynomial x^{2}+4 is not factored since it does not have any rational roots.