Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+32x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-2\right)\left(-20\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 32 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-2\right)\left(-20\right)}}{2\left(-2\right)}
Square 32.
x=\frac{-32±\sqrt{1024+8\left(-20\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-32±\sqrt{1024-160}}{2\left(-2\right)}
Multiply 8 times -20.
x=\frac{-32±\sqrt{864}}{2\left(-2\right)}
Add 1024 to -160.
x=\frac{-32±12\sqrt{6}}{2\left(-2\right)}
Take the square root of 864.
x=\frac{-32±12\sqrt{6}}{-4}
Multiply 2 times -2.
x=\frac{12\sqrt{6}-32}{-4}
Now solve the equation x=\frac{-32±12\sqrt{6}}{-4} when ± is plus. Add -32 to 12\sqrt{6}.
x=8-3\sqrt{6}
Divide -32+12\sqrt{6} by -4.
x=\frac{-12\sqrt{6}-32}{-4}
Now solve the equation x=\frac{-32±12\sqrt{6}}{-4} when ± is minus. Subtract 12\sqrt{6} from -32.
x=3\sqrt{6}+8
Divide -32-12\sqrt{6} by -4.
x=8-3\sqrt{6} x=3\sqrt{6}+8
The equation is now solved.
-2x^{2}+32x-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+32x-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
-2x^{2}+32x=-\left(-20\right)
Subtracting -20 from itself leaves 0.
-2x^{2}+32x=20
Subtract -20 from 0.
\frac{-2x^{2}+32x}{-2}=\frac{20}{-2}
Divide both sides by -2.
x^{2}+\frac{32}{-2}x=\frac{20}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-16x=\frac{20}{-2}
Divide 32 by -2.
x^{2}-16x=-10
Divide 20 by -2.
x^{2}-16x+\left(-8\right)^{2}=-10+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-10+64
Square -8.
x^{2}-16x+64=54
Add -10 to 64.
\left(x-8\right)^{2}=54
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{54}
Take the square root of both sides of the equation.
x-8=3\sqrt{6} x-8=-3\sqrt{6}
Simplify.
x=3\sqrt{6}+8 x=8-3\sqrt{6}
Add 8 to both sides of the equation.