Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32x^{2}=7
Add 7 to both sides. Anything plus zero gives itself.
x^{2}=\frac{7}{32}
Divide both sides by 32.
x=\frac{\sqrt{14}}{8} x=-\frac{\sqrt{14}}{8}
Take the square root of both sides of the equation.
32x^{2}-7=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 32\left(-7\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 32\left(-7\right)}}{2\times 32}
Square 0.
x=\frac{0±\sqrt{-128\left(-7\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{0±\sqrt{896}}{2\times 32}
Multiply -128 times -7.
x=\frac{0±8\sqrt{14}}{2\times 32}
Take the square root of 896.
x=\frac{0±8\sqrt{14}}{64}
Multiply 2 times 32.
x=\frac{\sqrt{14}}{8}
Now solve the equation x=\frac{0±8\sqrt{14}}{64} when ± is plus.
x=-\frac{\sqrt{14}}{8}
Now solve the equation x=\frac{0±8\sqrt{14}}{64} when ± is minus.
x=\frac{\sqrt{14}}{8} x=-\frac{\sqrt{14}}{8}
The equation is now solved.