Evaluate
47x^{2}-36x-75
Factor
47\left(x-\frac{18-\sqrt{3849}}{47}\right)\left(x-\frac{\sqrt{3849}+18}{47}\right)
Graph
Share
Copied to clipboard
32x^{2}-36x-35+15x^{2}-40
Combine -56x and 20x to get -36x.
47x^{2}-36x-35-40
Combine 32x^{2} and 15x^{2} to get 47x^{2}.
47x^{2}-36x-75
Subtract 40 from -35 to get -75.
factor(32x^{2}-36x-35+15x^{2}-40)
Combine -56x and 20x to get -36x.
factor(47x^{2}-36x-35-40)
Combine 32x^{2} and 15x^{2} to get 47x^{2}.
factor(47x^{2}-36x-75)
Subtract 40 from -35 to get -75.
47x^{2}-36x-75=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 47\left(-75\right)}}{2\times 47}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 47\left(-75\right)}}{2\times 47}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-188\left(-75\right)}}{2\times 47}
Multiply -4 times 47.
x=\frac{-\left(-36\right)±\sqrt{1296+14100}}{2\times 47}
Multiply -188 times -75.
x=\frac{-\left(-36\right)±\sqrt{15396}}{2\times 47}
Add 1296 to 14100.
x=\frac{-\left(-36\right)±2\sqrt{3849}}{2\times 47}
Take the square root of 15396.
x=\frac{36±2\sqrt{3849}}{2\times 47}
The opposite of -36 is 36.
x=\frac{36±2\sqrt{3849}}{94}
Multiply 2 times 47.
x=\frac{2\sqrt{3849}+36}{94}
Now solve the equation x=\frac{36±2\sqrt{3849}}{94} when ± is plus. Add 36 to 2\sqrt{3849}.
x=\frac{\sqrt{3849}+18}{47}
Divide 36+2\sqrt{3849} by 94.
x=\frac{36-2\sqrt{3849}}{94}
Now solve the equation x=\frac{36±2\sqrt{3849}}{94} when ± is minus. Subtract 2\sqrt{3849} from 36.
x=\frac{18-\sqrt{3849}}{47}
Divide 36-2\sqrt{3849} by 94.
47x^{2}-36x-75=47\left(x-\frac{\sqrt{3849}+18}{47}\right)\left(x-\frac{18-\sqrt{3849}}{47}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{18+\sqrt{3849}}{47} for x_{1} and \frac{18-\sqrt{3849}}{47} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}