Factor
\left(8x-7\right)\left(4x+3\right)
Evaluate
\left(8x-7\right)\left(4x+3\right)
Graph
Share
Copied to clipboard
a+b=-4 ab=32\left(-21\right)=-672
Factor the expression by grouping. First, the expression needs to be rewritten as 32x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,-672 2,-336 3,-224 4,-168 6,-112 7,-96 8,-84 12,-56 14,-48 16,-42 21,-32 24,-28
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -672.
1-672=-671 2-336=-334 3-224=-221 4-168=-164 6-112=-106 7-96=-89 8-84=-76 12-56=-44 14-48=-34 16-42=-26 21-32=-11 24-28=-4
Calculate the sum for each pair.
a=-28 b=24
The solution is the pair that gives sum -4.
\left(32x^{2}-28x\right)+\left(24x-21\right)
Rewrite 32x^{2}-4x-21 as \left(32x^{2}-28x\right)+\left(24x-21\right).
4x\left(8x-7\right)+3\left(8x-7\right)
Factor out 4x in the first and 3 in the second group.
\left(8x-7\right)\left(4x+3\right)
Factor out common term 8x-7 by using distributive property.
32x^{2}-4x-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 32\left(-21\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 32\left(-21\right)}}{2\times 32}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-128\left(-21\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-4\right)±\sqrt{16+2688}}{2\times 32}
Multiply -128 times -21.
x=\frac{-\left(-4\right)±\sqrt{2704}}{2\times 32}
Add 16 to 2688.
x=\frac{-\left(-4\right)±52}{2\times 32}
Take the square root of 2704.
x=\frac{4±52}{2\times 32}
The opposite of -4 is 4.
x=\frac{4±52}{64}
Multiply 2 times 32.
x=\frac{56}{64}
Now solve the equation x=\frac{4±52}{64} when ± is plus. Add 4 to 52.
x=\frac{7}{8}
Reduce the fraction \frac{56}{64} to lowest terms by extracting and canceling out 8.
x=-\frac{48}{64}
Now solve the equation x=\frac{4±52}{64} when ± is minus. Subtract 52 from 4.
x=-\frac{3}{4}
Reduce the fraction \frac{-48}{64} to lowest terms by extracting and canceling out 16.
32x^{2}-4x-21=32\left(x-\frac{7}{8}\right)\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{8} for x_{1} and -\frac{3}{4} for x_{2}.
32x^{2}-4x-21=32\left(x-\frac{7}{8}\right)\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
32x^{2}-4x-21=32\times \frac{8x-7}{8}\left(x+\frac{3}{4}\right)
Subtract \frac{7}{8} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-21=32\times \frac{8x-7}{8}\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-21=32\times \frac{\left(8x-7\right)\left(4x+3\right)}{8\times 4}
Multiply \frac{8x-7}{8} times \frac{4x+3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-21=32\times \frac{\left(8x-7\right)\left(4x+3\right)}{32}
Multiply 8 times 4.
32x^{2}-4x-21=\left(8x-7\right)\left(4x+3\right)
Cancel out 32, the greatest common factor in 32 and 32.
x ^ 2 -\frac{1}{8}x -\frac{21}{32} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 32
r + s = \frac{1}{8} rs = -\frac{21}{32}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{16} - u s = \frac{1}{16} + u
Two numbers r and s sum up to \frac{1}{8} exactly when the average of the two numbers is \frac{1}{2}*\frac{1}{8} = \frac{1}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{16} - u) (\frac{1}{16} + u) = -\frac{21}{32}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{21}{32}
\frac{1}{256} - u^2 = -\frac{21}{32}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{21}{32}-\frac{1}{256} = -\frac{169}{256}
Simplify the expression by subtracting \frac{1}{256} on both sides
u^2 = \frac{169}{256} u = \pm\sqrt{\frac{169}{256}} = \pm \frac{13}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{16} - \frac{13}{16} = -0.750 s = \frac{1}{16} + \frac{13}{16} = 0.875
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}