Solve for x
x=\sqrt{287}+18\approx 34.941074346
x=18-\sqrt{287}\approx 1.058925654
Graph
Quiz
Quadratic Equation
5 problems similar to:
32 x + 2 \times 20 x - 2 x ^ { 2 } = 32 \times 20 - 566
Share
Copied to clipboard
32x+40x-2x^{2}=32\times 20-566
Multiply 2 and 20 to get 40.
72x-2x^{2}=32\times 20-566
Combine 32x and 40x to get 72x.
72x-2x^{2}=640-566
Multiply 32 and 20 to get 640.
72x-2x^{2}=74
Subtract 566 from 640 to get 74.
72x-2x^{2}-74=0
Subtract 74 from both sides.
-2x^{2}+72x-74=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\left(-2\right)\left(-74\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 72 for b, and -74 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\left(-2\right)\left(-74\right)}}{2\left(-2\right)}
Square 72.
x=\frac{-72±\sqrt{5184+8\left(-74\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-72±\sqrt{5184-592}}{2\left(-2\right)}
Multiply 8 times -74.
x=\frac{-72±\sqrt{4592}}{2\left(-2\right)}
Add 5184 to -592.
x=\frac{-72±4\sqrt{287}}{2\left(-2\right)}
Take the square root of 4592.
x=\frac{-72±4\sqrt{287}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{287}-72}{-4}
Now solve the equation x=\frac{-72±4\sqrt{287}}{-4} when ± is plus. Add -72 to 4\sqrt{287}.
x=18-\sqrt{287}
Divide -72+4\sqrt{287} by -4.
x=\frac{-4\sqrt{287}-72}{-4}
Now solve the equation x=\frac{-72±4\sqrt{287}}{-4} when ± is minus. Subtract 4\sqrt{287} from -72.
x=\sqrt{287}+18
Divide -72-4\sqrt{287} by -4.
x=18-\sqrt{287} x=\sqrt{287}+18
The equation is now solved.
32x+40x-2x^{2}=32\times 20-566
Multiply 2 and 20 to get 40.
72x-2x^{2}=32\times 20-566
Combine 32x and 40x to get 72x.
72x-2x^{2}=640-566
Multiply 32 and 20 to get 640.
72x-2x^{2}=74
Subtract 566 from 640 to get 74.
-2x^{2}+72x=74
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+72x}{-2}=\frac{74}{-2}
Divide both sides by -2.
x^{2}+\frac{72}{-2}x=\frac{74}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-36x=\frac{74}{-2}
Divide 72 by -2.
x^{2}-36x=-37
Divide 74 by -2.
x^{2}-36x+\left(-18\right)^{2}=-37+\left(-18\right)^{2}
Divide -36, the coefficient of the x term, by 2 to get -18. Then add the square of -18 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-36x+324=-37+324
Square -18.
x^{2}-36x+324=287
Add -37 to 324.
\left(x-18\right)^{2}=287
Factor x^{2}-36x+324. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-18\right)^{2}}=\sqrt{287}
Take the square root of both sides of the equation.
x-18=\sqrt{287} x-18=-\sqrt{287}
Simplify.
x=\sqrt{287}+18 x=18-\sqrt{287}
Add 18 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}