Factor
\left(8n-3\right)\left(4n+9\right)
Evaluate
\left(8n-3\right)\left(4n+9\right)
Share
Copied to clipboard
a+b=60 ab=32\left(-27\right)=-864
Factor the expression by grouping. First, the expression needs to be rewritten as 32n^{2}+an+bn-27. To find a and b, set up a system to be solved.
-1,864 -2,432 -3,288 -4,216 -6,144 -8,108 -9,96 -12,72 -16,54 -18,48 -24,36 -27,32
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -864.
-1+864=863 -2+432=430 -3+288=285 -4+216=212 -6+144=138 -8+108=100 -9+96=87 -12+72=60 -16+54=38 -18+48=30 -24+36=12 -27+32=5
Calculate the sum for each pair.
a=-12 b=72
The solution is the pair that gives sum 60.
\left(32n^{2}-12n\right)+\left(72n-27\right)
Rewrite 32n^{2}+60n-27 as \left(32n^{2}-12n\right)+\left(72n-27\right).
4n\left(8n-3\right)+9\left(8n-3\right)
Factor out 4n in the first and 9 in the second group.
\left(8n-3\right)\left(4n+9\right)
Factor out common term 8n-3 by using distributive property.
32n^{2}+60n-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-60±\sqrt{60^{2}-4\times 32\left(-27\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-60±\sqrt{3600-4\times 32\left(-27\right)}}{2\times 32}
Square 60.
n=\frac{-60±\sqrt{3600-128\left(-27\right)}}{2\times 32}
Multiply -4 times 32.
n=\frac{-60±\sqrt{3600+3456}}{2\times 32}
Multiply -128 times -27.
n=\frac{-60±\sqrt{7056}}{2\times 32}
Add 3600 to 3456.
n=\frac{-60±84}{2\times 32}
Take the square root of 7056.
n=\frac{-60±84}{64}
Multiply 2 times 32.
n=\frac{24}{64}
Now solve the equation n=\frac{-60±84}{64} when ± is plus. Add -60 to 84.
n=\frac{3}{8}
Reduce the fraction \frac{24}{64} to lowest terms by extracting and canceling out 8.
n=-\frac{144}{64}
Now solve the equation n=\frac{-60±84}{64} when ± is minus. Subtract 84 from -60.
n=-\frac{9}{4}
Reduce the fraction \frac{-144}{64} to lowest terms by extracting and canceling out 16.
32n^{2}+60n-27=32\left(n-\frac{3}{8}\right)\left(n-\left(-\frac{9}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{8} for x_{1} and -\frac{9}{4} for x_{2}.
32n^{2}+60n-27=32\left(n-\frac{3}{8}\right)\left(n+\frac{9}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
32n^{2}+60n-27=32\times \frac{8n-3}{8}\left(n+\frac{9}{4}\right)
Subtract \frac{3}{8} from n by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
32n^{2}+60n-27=32\times \frac{8n-3}{8}\times \frac{4n+9}{4}
Add \frac{9}{4} to n by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32n^{2}+60n-27=32\times \frac{\left(8n-3\right)\left(4n+9\right)}{8\times 4}
Multiply \frac{8n-3}{8} times \frac{4n+9}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
32n^{2}+60n-27=32\times \frac{\left(8n-3\right)\left(4n+9\right)}{32}
Multiply 8 times 4.
32n^{2}+60n-27=\left(8n-3\right)\left(4n+9\right)
Cancel out 32, the greatest common factor in 32 and 32.
x ^ 2 +\frac{15}{8}x -\frac{27}{32} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 32
r + s = -\frac{15}{8} rs = -\frac{27}{32}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{15}{16} - u s = -\frac{15}{16} + u
Two numbers r and s sum up to -\frac{15}{8} exactly when the average of the two numbers is \frac{1}{2}*-\frac{15}{8} = -\frac{15}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{15}{16} - u) (-\frac{15}{16} + u) = -\frac{27}{32}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{27}{32}
\frac{225}{256} - u^2 = -\frac{27}{32}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{27}{32}-\frac{225}{256} = -\frac{441}{256}
Simplify the expression by subtracting \frac{225}{256} on both sides
u^2 = \frac{441}{256} u = \pm\sqrt{\frac{441}{256}} = \pm \frac{21}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{15}{16} - \frac{21}{16} = -2.250 s = -\frac{15}{16} + \frac{21}{16} = 0.375
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}